[1] 高丽茵, 李财富, 刘志权, 等. 先进电子封装中焊点可靠性的研究进展[J]. 机械工程学报, 2022, 58(2): 185-202. [2] KONDO K, SUZUKI Y, SAITO T, et al. High speed through silicon via filling by copper electrodeposition[J]. Electrochemical and Solid-State Letters, 2010, 13(5): D26-D30. [3] HUANG S M, LIU C W, DOW W P. Effect of convection-dependent adsorption of additives on microvia filling in an acidic copper plating solution[J]. Journal of the Electrochemical Society, 2012, 159(3): D135-D141. [4] CHEN Q W, WANG Z Y, CAI J, et al. The influence of ultrasonic agitation on copper electroplating of blind-vias for SOI three-dimensional integration[J]. Microelectronic Engineering, 2010, 87(3): 527-531. [5] KONDO K, SUZUKI Y, SAITO T, et al. Shape evolution of electrodeposited bumps with shallow and deep cavities[J]. Journal of the Electrochemical Society, 2009, 156(12): D548-D557. [6] HONG S C, LEE W G, KIM W J, et al. Reduction of defects in TSV filled with Cu by high-speed 3-step PPR for 3D Si chip stacking[J]. Microelectronics Reliability, 2011, 51(12): 2228-2235. [7] HAYASHI T, MATSUURA S, KONDO K, et al. Role of cuprous ion in copper electrodeposition acceleration[J]. Journal of the Electrochemical Society, 2015, 162(6): D199-D203. [8] XU Z G, ZHONG C, LI Z, et al. Electrochemical simulation of electrodeposition growth of copper in Through Silicon Via (TSV)[C]//2023 24th International Conference on Electronic Packaging Technology (ICEPT), Shihezi, China, 2023: 1658-1662. [9] WEST A C. Theory of filling of high‐aspect ratio trenches and vias in presence of additives[J]. Journal of the Electrochemical Society, 2019, 147(1): 227-232. [10] 金磊, 杨家强, 杨防祖, 等. 芯片铜互连研究及进展[J]. 电化学, 2020, 26(4): 521-530. [11] 林旭荣, 张剑如. 普通镀铜光亮剂在垂直电镀线的盲孔电镀填孔能力研究[J]. 印制电路信息, 2013, 21(4): 229-233. [12] 朱盈. 硅通孔直流铜填充中添加剂协同效应的仿真[D]. 上海: 上海交通大学, 2016. [13] LEFEBVRE M, ALLARDYCE G, SEITA M, et al. Copper electroplating technology for microvia filling[J]. Circuit World, 2003, 29(2): 9-14. [14] 谌可馨, 高丽茵, 许增光, 等. 先进封装中硅通孔(TSV)铜互连电镀研究进展[J]. 科技导报, 2023, 41(5): 15-26. [15] KELLY J J, WEST A C. Copper deposition in the presence of polyethylene glycol: I. quartz crystal microbalance study[J]. Journal of the Electrochemical Society, 1998, 145(10): 3472-3476. [16] KELLY J J, WEST A C. Copper deposition in the presence of polyethylene glycol: Ⅱ. electrochemical impedance spectroscopy[J]. Journal of the Electrochemical Society, 1998, 145(10): 3477-3481. [17] KANG M, GEWIRTH A A. Influence of additives on copper electrodeposition on physical vapor deposited (PVD) copper substrates[J]. Journal of the Electrochemical Society, 2003, 150(6): C426-C434. [18] DOW W P, HUANG H S, YEN M Y, et al. Roles of chloride ion in microvia filling by copper electrodeposition[J]. Journal of the Electrochemical Society, 2005, 152(2): C77-C88. [19] YOKOI M, KONISHI S, HAYASHI T. Adsorption behavior of polyoxyethyleneglycole on the copper surface in an acid copper sulfate bath[J]. Denki Kagaku Oyobi Kogyo Butsuri Kagaku, 1984, 52(4): 218-223. [20] KO S L, LIN J Y, WANG Y Y, et al. Effect of the molecular weight of polyethylene glycol as single additive in copper deposition for interconnect metallization[J]. Thin Solid Films, 2008, 516(15): 5046-5051. [21] KONDO K, MATSUMOTO T, WATANABE K. Role of additives for copper damascene electrodeposition[J]. Journal of the Electrochemical Society, 2004, 151(4): C250-C255. [22] MOFFAT T P, BONEVICH J E, HUBER W H, et al. Superconformal electrodeposition of copper in 500-90 nm features[J]. Journal of the Electrochemical Society, 2000, 147(12): 4524-4535. [23] KONDO K, YAMAKAWA N, TANAKA Z, et al. Copper damascene electrodeposition and additives[J]. Journal of Electroanalytical Chemistry, 2003, 559: 137-142. [24] ADOLF J, LANDAU U. Predictive analytical fill model of interconnect metallization providing optimal additives concentrations[J]. Journal of the Electrochemical Society, 2011, 158(8): D469-D476. [25] MOFFAT T P, WHEELER D, EDELSTEIN M D, et al. Superconformal film growth: mechanism and quantification[J]. IBM Journal of Research and Development, 2005, 49(1): 19-36. [26] AKOLKAR R, LANDAU U. A time-dependent transport-kinetics model for additive interactions in copper interconnect metallization[J]. Journal of the Electrochemical Society, 2004, 151(11): C702-C712. [27] 吴依彩, 毛子杰, 王翀, 等. 高端电子制造中电镀铜添加剂作用机制研究进展[J]. 中国科学(化学), 2021, 51(11): 1474-1488. [28] DOW W P, LIU C W. Evaluating the filling performance of a copper plating formula using a simple galvanostat method[J]. Journal of the Electrochemical Society, 2006, 153(3): C190-C195. [29] DOW W P, YEN M Y, LIAO S Z, et al. Filling mechanism in microvia metallization by copper electroplating[J]. Electrochimica Acta, 2008, 53(28): 8228-8237. [30] DOW W P, YEN M Y, CHOU C W, et al. Practical monitoring of filling performance in a copper plating bath[J]. Electrochemical and Solid-State Letters, 2006, 9(8): 134-138. [31] DOW W P, YEN M Y, LIU C W, et al. Enhancement of filling performance of a copper plating formula at low chloride concentration[J]. Electrochimica Acta, 2008, 53(10): 3610-3619. [32] ZHU H P, ZHU Q S, ZHANG X, et al. Microvia filling by copper electroplating using a modified safranine T as a leveler[J]. Journal of the Electrochemical Society, 2017, 164(9): D645-D651. [33] CHANG C, LU X B, LEI Z W, et al. 2-Mercaptopyridine as a new leveler for bottom-up filling of micro-vias in copper electroplating[J]. Electrochimica Acta, 2016, 208: 33-38. [34] LEE M H, LEE Y, SUNG M, et al. Structural Influence of Terminal Functional Groups on TEG-Based Leveler in Microvia Filling[J]. Journal of The Electrochemical Society, 2020, 167(10): 102505-102512. [34] LEE M H, LEE Y, SUNG M, et al. Structural influence of terminal functional groups on TEG-based leveler in microvia filling[J]. Journal of the Electrochemical Society, 2020, 167(10): 102505. [35] LI J, XU J, WANG X M, et al. Novel 2, 5-bis(6-(trimethylamonium)hexyl)-3, 6-diaryl-1, 4-diketopyrrolo[3, 4-c]pyrrole pigments as levelers for efficient electroplating applications[J]. Dyes and Pigments, 2021, 186: 109064. [36] JUN L. Simulation and characterisation of electroplated micro-copper columns for electronic interconnection[D]. Loughborough: Loughborough University, 2010 [37] PRICER T J, KUSHNER M J, ALKIRE R C. Monte Carlo simulation of the electrodeposition of copper[J]. Journal of the Electrochemical Society, 2002, 149(8): C406-C412. [38] POHJORANTA A, TENNO R. A method for microvia-fill process modeling in a Cu plating system with additives[J]. Journal of the Electrochemical Society, 2007, 154(10): D502-D509. [39] TENNO R, POHJORANTA A. An ALE model for prediction and control of the microvia fill process with two additives[J]. Journal of the Electrochemical Society, 2008, 155(5): D383-D388. [40] WHEELER D, JOSELL D, MOFFAT T P. Modeling superconformal electrodeposition using the level set method[J]. Journal of the Electrochemical Society, 2003, 150(5): C302-C310. [41] AKOLKAR R, DUBIN V. Pattern density effect on the bottom-up fill during damascene copper electrodeposition[J]. Electrochemical and Solid-State Letters, 2007, 10(6): D55-D60. [42] KAUFMANN J G, DESMULLIEZ M P Y, TIAN Y T, et al. Megasonic agitation for enhanced electrodeposition of copper[J]. Microsystem Technologies, 2009, 15(8): 1245-1254. [43] PRICER T J, KUSHNER M J, ALKIRE R C. Monte Carlo simulation of the electrodeposition of copper[J]. Journal of the Electrochemical Society, 2002, 149(8): C396-C405. [44] KANEKO Y, HIWATARI Y, OHARA K. Monte Carlo simulation of thin film growth with defect formation: application to via filling[J]. Molecular Simulation, 2004, 30(13/14/15): 895-899. [45] KANEKO Y, HIWATARI Y, OHARA K, et al. Kinetic Monte Carlo simulation of three-dimensional shape evolution with void formation using solid-by-solid model: Application to via and trench filling[J]. Electrochimica Acta, 2013, 100: 321-328. |