[1] 刘培生, 杨龙龙, 卢颖, 等. 倒装芯片封装技术的发展[J]. 电子元件与材料, 2014, 33(2): 1-5, 15. [2] 张文杰, 朱朋莉, 赵涛, 等. 倒装芯片封装技术概论[J]. 集成技术, 2014, 3(6): 84-91. [3] 赵雪薇, 阎璐, 邢朝洋, 等. 微系统集成用倒装芯片工艺技术的发展及趋势[J]. 导航与控制, 2019, 18(5): 11-21, 39. [4] WAN J W, ZHANG W J, BERGSTROM D J. Recent advances in modeling the underfill process in flip-chip packaging[J]. Microelectronics Journal, 2007, 38(1): 67-75. [5] SHAN Z Z, LIN K, HU A M, et al. Mitigation and mechanism of tin whisker on micro-bumps by hard and soft underfills[J]. Electronic Materials Letters, 2022, 18(6): 547-558. [6] LI G, HE Y C, ZHU P L, et al. Tailored surface chemistry of SiO2 particles with improved rheological, thermal-mechanical and adhesive properties of epoxy based composites for underfill applications[J]. Polymer, 2018, 156: 111-120. [7] ZHANG Z, WONG C P. Recent advances in flip-chip underfill: Materials, process, and reliability[J]. IEEE Transactions on Advanced Packaging, 2004, 27(3): 515-524. [8] NG F C, ABAS M A. Underfill flow in flip-chip encapsulation process: A review[J]. Journal of Electronic Packaging, 2022, 144(1): 010803. [9] KHOR C Y, ABDUL MUJEEBU M, ABDULLAH M Z, et al. Finite volume based CFD simulation of pressurized flip-chip underfill encapsulation process[J]. Microelectronics Reliability, 2010, 50(1): 98-105. [10] GWON H R, LEE H J, KIM J M, et al. Dynamic behavior of capillary-driven encapsulation flow characteristics for different injection types in flip chip packaging[J]. Journal of Mechanical Science and Technology, 2014, 28(1): 167-173. [11] ABAS A, HASLINDA M S, ISHAK M H H, et al. Effect of ILU dispensing types for different solder bump arrangements on CUF encapsulation process[J]. Microelectronic Engineering, 2016, 163(9): 83-97. [12] LU D D, WONG C P. Materials for advanced packaging[M]. Atlanta: Springer International Publishing, 2017. [13] NG F C, ABAS A, GAN Z L, et al. Discrete phase method study of ball grid array underfill process using nano-silica filler-reinforced composite-encapsulant with varying filler loadings[J]. Microelectronics Reliability, 2017, 72: 45-64. [14] 胡志勇. 实施倒装芯片的组装[J]. 电子工艺技术, 2004, 25(1): 9-12. [15] HO P S, XIONG Z P, CHUA K H. Study on factors affecting underfill flow and underfill voids in a large-die flip chip ball grid array (FCBGA) package[C]// 2007 9th Electronics Packaging Technology Conference, Singapore, 2007. [16] 陈志健, 王剑峰, 朱思雄. 底部填充固化程序对固化后产品微气孔的影响[J]. 电子与封装, 2021, 21(9): 090202. [17] WANG H, XIANG H P, HAO X F, et al. Mechanism study of ultrasonic-vibration-assisted underfill process for flip-chip encapsulation[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 6(11): 1711-1722. [18] LIN S W, YOUNG W B. Study on bump arrangement to accelerate the underfill flow in flip-chip packaging[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3(1): 40-45. [19] SUNG K J, CHOI K S, BAE H C, et al. Novel bumping and underfill technologies for 3D IC integration[J]. ETRI Journal, 2012, 34(5): 706-712. [20] ZHANG Z Q, WONG C P. Development of no-flow underfill for lead-free bumped flip-chip assemblies[C]// International Symposium on Electronic Materials and Packaging (EMAP2000),Hong Kong, 2000. [21] ZHANG Z Q, SHI S H, WONG C P. Development of no-flow underfill materials for lead-free solder bumped flip-chip applications[J]. IEEE Transactions on Components and Packaging Technologies, 2001, 24(1): 59-66. [22] LEE S, YIM M J, MASTER R N, et al. Void formation study of flip chip in package using no-flow underfill[J]. IEEE Transactions on Electronics Packaging Manufacturing, 2008, 31(4): 297-305. [23] NASHRUDIN M N, ABAS A, ABDULLAH M Z, et al. Study of different dispensing patterns of no-flow underfill using numerical and experimental methods[J]. Journal of Electronic Packaging, 2021, 143(3): 031005. [24] HURLEY J M, BERFIELD T, YE S, et al. Kinetic modeling of no-flow underfill cure and its relationship to solder wetting and voiding[C]// 52nd Electronic Components and Technology Conference, San Diego, 2002. [25] KATSURAYAMA S, TOHMYOH H. Effect of the thermomechanical properties of No-flow underfill materials on interconnect reliability[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3(3): 370-376. [26] ZHU P L, LI G, GUO Q, et al. Underfill technology for fine pitch flip chip applications[C]// 2016 17th International Conference on Electronic Packaging Technology (ICEPT), Wuhan, 2016. [27] ROA F. An overview of molded underfill in flip chip packaging applications[J]. International Symposium on Microelectronics, 2013(1): 271-275. [28] SAITO T, KITAJIMA T, KAWAGUCHI M, et al. New molding technology enabling advanced packaging technology[C]// 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), Orlando, 2020. [29] YEN F, HUNG L, KAO N, et al. MoldFlow simulation study on void risk prediction for FCCSP with molded underfill technology[C]// 2014 IEEE 16th Electronics Packaging Technology Conference (EPTC), Singapore, 2014. [30] JOSHI M, PENDSE R, PANDEY V, et al. Molded underfill (MUF) technology for flip chip packages in mobile applications[C]// 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC), Las Vegas, 2010. [31] REBIBIS K J, GERETS C, CAPUZ G, et al. Wafer applied and no flow underfill screening for 3D stacks[C]// 2012 IEEE 14th Electronics Packaging Technology Conference (EPTC), Singapore, 2012. [32] HUANG Y W, FAN C W, LIN Y M, et al. Development of high throughput adhesive bonding scheme by wafer-level underfill for 3D die-to-interposer stacking with 30μm-pitch micro interconnections[C]// 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), San Diego, 2015. [33] LIBRES J, ROBINSON K. Challenges in the assembly of large die, high bump density Pb-free flip chip packages[C]// 2007 32nd IEEE/CPMT International Electronic Manufacturing Technology Symposium, San Jose, 2007. [34] ANDRE J S, ULRICH N, JI K R, et al. Interfacial behavior of flux residues and its impact on copper/underfill adhesion in microelectronic packaging[J]. Journal of Electronic Packaging, 2021, 143(1): 011004. [35] KATOH S, KANG D, UENO K, et al. Development of fluxless micro-bonding and narrow gap filling process[C]// 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, 2023. [36] 汤姝莉, 赵国良, 张健, 等. 倒装焊后清洗工艺及其对底部填充的影响[J]. 电子与封装, 2021, 21(2): 020201. [37] NG F C, ZAWAWI M H, ABAS M A. Spatial analysis of underfill flow in flip-chip encapsulation[J]. Soldering & Surface Mount Technology, 2021, 33(2): 112-127. [38] LING C, AZAHARI M T, ABAS M A, et al. Deep learning and analytical study of void regional formation in flip-chip underfilling process[J]. Soldering & Surface Mount Technology, 2024, 36(1): 60-68. [39] GUO Q, ZHU P L, LI G, et al. Effects of surface-modified alkyl chain length of silica fillers on the rheological and thermal mechanical properties of underfill[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 6(12): 1796-1803. [40] WANG H M, YAN Y B, TIAN L L, et al. High content of spherical nanosilica filled epoxy resin master batch with low viscosity and superior thermomechanical performance[J]. Composites Communications, 2022, 36: 101355. [41] WEN Y F, CHEN C, YE Y S, et al. Advances on thermally conductive epoxy-based composites as electronic packaging underfill materials—a review[J]. Advanced Materials, 2022, 34(52): 2201023.
|