[1] LIN F, BI W Z, JU G K, et al. Evolution of Ag3Sn at Sn–3.0Ag–0.3Cu–0.05Cr/Cu joint interfaces during thermal aging[J]. Journal of Alloys and Compounds, 2011, 509(23): 6666-6672. [2] TSAI Y L, HWANG W S. Pasty ranges and latent heat release modes for Sn-9Zn-xAg lead-free solder alloys[J]. MATERIALS TRANSACTIONS, 2004, 45(6): 1949-1957. [3] ZHANG L, SUN L, GUO Y H. Microstructures and properties of Sn58Bi, Sn35Bi0.3Ag, Sn35Bi1.0Ag solder and solder joints[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(10): 7629-7634. [4] 孔达, 张亮, 杨帆. 基于Anand模型SnAgCu-X焊点疲劳寿命预测[J]. 焊接学报, 2017, 38(4): 17-21. [5] 葛一铭, 谢爽, 吕晓瑞, 等. ABF塑封基板叠孔的高可靠结构设计[J]. 电子与封装, 2024, 24(3): 030209. [6] 于红娇, 张弓, 马莒生. Sn-Zn-Bi-In-P新型无铅焊料压缩力学性能分析及ANAND本构方程参数确定[J]. 稀有金属材料与工程, 2014, 43(10): 2383-2388. [7] 邢睿思, 王龙, 侯传涛, 等. 锡铅钎料粘塑性行为及其本构描述[J]. 力学季刊, 2022, 43(3): 712-720. [8] EL-DALY A A, EL-TAHER A M, GOUDA S. Novel bi-containing Sn-1.5Ag-0.7Cu lead-free solder alloy with further enhanced thermal property and strength for mobile products[J]. Materials & Design (1980-2015), 2015, 65: 796-805. [9] 张惟斌, 申坤, 姚颂禹, 等. 基于Anand模型的BGA封装热冲击循环分析及焊点疲劳寿命预测[J]. 电子与封装, 2024, 24(3): 030207. [10] BODNER S R, PARTOM Y. Constitutive equations for elastic-viscoplastic strain-hardening materials[J]. Journal of Applied Mechanics, 1975, 42(2): 385. [11] ANAND L. Constitutive equations for the rate-dependent deformation of metals at elevated temperatures[J]. Journal of Engineering Materials and Technology, 1982, 104(1): 12-17. [12] VIESPOLI L M, JOHANSON A, ALVARO A, et al. Tensile characterization of a lead alloy: creep induced strain rate sensitivity[J]. Materials Science and Engineering: A, 2019, 744: 365-375. [13] LALL P, SAHA M, SUHLING J. Effect of prolonged storage on high strain rate mechanical properties of QSAC10 and QSAC20 solders after exposure to isothermal aging of 50 ℃[C]//2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm), San Diego, CA, USA, 2022. [14] 王旭光, 杨镓溢, 江凯, 等. 基于MATLAB的集成电路储能焊封装能量分布仿真及研究[J]. 电子与封装, 2022, 22(1): 010202.
|