[1] 贾鑫, 魏俊俊, 黄亚博, 等. 金刚石散热衬底在GaN基功率器件中的应用进展[J]. 表面技术, 2020, 49(11): 111-123. [2] 杜建宇, 唐睿, 张晓宇, 等. 基于金刚石的先进热管理技术研究进展[J]. 电子与封装, 2023, 23(3): 030107. [3] ?刘健,张长城,崔朝探,等. 2~6 GHz小型化、高效率GaN功率放大器[J]. 电子与封装, 2023, 23(9): 090402. [4] TADJER M J, ANDERSON T J, ANCONA M G, et al. GaN-On-Diamond HEMT Technology With TAVG = 176℃ at PDC, max = 56 W/mm Measured by Transient Thermoreflectance Imaging[J]. IEEE Electron Device Letters, 2019, 40(6): 881-884. [5] 顾鹏飞, 郭怀新, 沈国策, 等. GaN功率器件片内微流热管理技术研究进展[J]. 电子元件与材料, 2020, 39(6): 1-7. [6] TUCKERMAN D B, PEASE R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129. [7] 余怀强, 唐光庆, 桂进乐, 等. 微系统热管理技术的新发展[J]. 压电与声光, 2018, 40(6): 931-935. [8] ?ALTMAN D H, GUPTA A, TYHACH M. Development of a diamond microfluidics-based intra-chip cooling technology for GaN[C]// ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels , San Francisco, California, USA, 2015. [9] YANG Q, HUANG Y P, NIU Z T, et al. Experimental investigation on the heat transfer characteristics of multi-point heating microchannels for simulating solar cell cooling[J]. Energies, 2022, 15(15): 5315. [10] QI Z N, ZHENG Y T, ZHU X H, et al. An ultra-thick all-diamond microchannel heat sink for single-phase heat transmission efficiency enhancement[J]. Vacuum, 2020, 177: 109377. [11] 崔朝探, 陈政, 郭建超, 等. 金刚石在GaN功率放大器热设计中的应用[J]. 半导体技术, 2022, 10(47): 834-838. [12] 王立. 不同结构水冷散热器流体流动和换热性能研究[D]. 成都: 电子科技大学, 2013. [13] 卜旭. 基于正交试验的塑料燃油箱焊接性能研究[D]. 上海: 上海交通大学, 2016.
|