[1] HUANG J T, ZHU F Y, HU W, et al. Molding compounds based on aminophenoxyphthalonitrile/epoxy resin for high-temperature electronic packaging applications[J]. Reactive and Functional Polymers, 2024, 204: 106041. [2] YANG L, DING A, XU M, et al. Characterization of potting epoxy resins performance parameters based on a viscoelastic constitutive model[J]. Polymers, 2024, 16(7): 930. [3] ROETSCH K, STOMMEL M, HORST T. Investigation of epoxy resin under uniaxial, biaxial, and triaxial quasi-static loads[J]. Journal of Engineering Mechanics, 2025, 151(1): 04024099. [4] RASHID M A, ISLAM M A, HASAN M N, et al. A critical review of dynamic bonds containing curing agents for epoxy resin: Synthesis, challenges, and emerging applications[J]. Polymer Degradation and Stability, 2024, 229: 110980. [5] SHUNDO A, THAO PHAN N, AOKI M, et al. Exploring the impact of molecular structure on curing kinetics: a comparative study of diglycidyl ether of bisphenol A and F epoxy resins[J]. The Journal of Physical Chemistry B, 2024, 128(19): 4846-4852. [6] YU M, FU Q H, ZHANG T T, et al. Properties and curing kinetics of epoxy resin toughened by dimer acid diglycidyl ester[J]. Thermochimica Acta, 2021, 699: 178910. [7] WEI J, YAN J, LI S, et al. Preparation and application of a novel liquid oxygen-compatible epoxy resin of fluorinated glycidyl amine with low viscosity[J]. Polymers, 2024, 16(19): 2759. [8] BIFULCO A, IMPARATO C, GAAN S, et al. Hybrid strategies for the improvement of the flame retardancy of in situ silica-epoxy nanocomposites cured with aliphatic hardener[J]. Journal of Physics: Conference Series, 2023, 2526(1): 012037. [9] IKENOMATA R, KAWASHIMA T, HOZUMI N, et al. Electrical properties of alicyclic epoxy resins for application to varnish of rotating machine winding[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2023, 18(10): 1583-1588. [10] HAO Q G, LIU S, WANG X M, et al. Multi-epoxy groups anchoring on graphene oxide and solvent-free mixing with epoxy resin to enhance mechanical and frictional properties[J]. Diamond and Related Materials, 2024, 143: 110925. [11] ZHU G Y, CHEN X R, HONG Z L, et al. Influence of DBD treated nano-Al2O3 on thermal and electrical insulation properties of epoxy nanocomposites at high temperatures[J]. Journal of Applied Polymer Science, 2022, 139(38): e52910. [12] ZHANG T D, WANG C H, LIU G, et al. High thermal conductivity and low dielectric loss of three-dimensional boron nitride nanosheets/epoxy composites[J]. Composites Communications, 2024, 50: 102007. [13] ENDO S, ISHIKAWA Y, SHIRAKASHI H, et al. Effect of hydroxyl group concentration generated by vacuum ultraviolet light on the adhesion between epoxy resin and copper[J]. Journal of Electronic Materials, 2024, 53(11): 7044-7056. [14] LIN C H, WHANG W T, CHEN C H, et al. Novel siloxane-modified epoxy resins as promising encapsulant for LEDs[J]. Polymers (Basel), 2019, 12(1): E21. [15] SHI W, LI J, SONG M, et al. Polyurethane-based cross-linked nano spheres and their application in toughening epoxy resin[J]. Journal of Applied Polymer Science, 2024, 141(26): e55579. [16] WANG C B, FENG Y, ZHANG C H, et al. High heat-resistant (250 ℃) epoxy resin composites with excellent dielectric properties[J]. Journal of Applied Polymer Science, 2022, 139(40): e52963. [17] ZHAO K B, CAI R, GUO S, et al. Mechanically robust, corrosion and impact resistance polyimide nanofiber/epoxy composite by mechanochemical fabrication[J]. Polymer Composites, 2024, 45(13): 12092-12103. [18] KOSARLI M, FOTEINIDIS G, TSIRKA K, et al. Concurrent recovery of mechanical and electrical properties in nanomodified capsule-based self-healing epoxies[J]. Polymer, 2021, 227: 123843. [19] ZHAO E B, XIA Q H, LIU L L, et al. Experimental study on multiple self-healing and impact properties of 2D carbon fiber fabric-reinforced epoxy composites with shape memory properties[J]. Thin-Walled Structures, 2024, 205: 112549. [20] XU P W, GAO C Y, MA J C, et al. High fire-safety epoxy resin with functional polymer/metal-organic framework hybrids[J]. European Polymer Journal, 2024, 220: 113505. [21] SUN Q H, DUN L N, CHEN X L, et al. Hydrogen bond self-assembly strategy to preparation Zeolite@BM for enhancing the fire retardancy of EP[J]. Materials Today Communications, 2024, 41: 110644. [22] ZHOU X, LI R Z, FU F, et al. A novel efficient flame-retardant curing agent for epoxy resin based on P-N synergistic effect: bio-based benzoxazine phosphate ester[J]. Chemical Engineering Journal, 2024, 499: 156441. [23] 王殿年, 段嘉伟, 刘艳明, 等. 一种高可靠性环氧树脂组合物的制备[J]. 电子与封装, 2020, 20(10): 100201. [24] 莫洪强, 秦会斌, 毛祥根. 纳米无机粒子对环氧树脂胶黏剂导热性能的影响[J]. 电子与封装, 2016, 16(7): 10-13. [25] ZENG G, BORUCKI L, WENZEL O, et al. First results of development of a lifetime model for transfer molded discrete power devices [C]//Power Conversion and Intelligent Motion (PCIM) Europe 2018, Nuremberg, Germany, 2018. [26] CHEN X R, WANG Q L, REN N, et al. Potential of epoxy nanocomposites for packaging materials of high voltage power modules: a validation using experiments and simulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 28(6): 2161-2169. [27] QIAN Y X, GANG S F, LI Y, et al. Advanced multifunctional IGBT packing materials with enhanced thermal conductivity and electromagnetic wave absorption properties[J]. Journal of Colloid and Interface Science, 2024, 653: 617-626. [28] WANG X Y, YANG Z D, WANG B Y, et al. Effect of epoxy resin addition on properties and corrosion behavior of sintered joints in power modules serviced offshore[J]. Journal of Materials Research and Technology, 2023, 25: 6593-6612. [29] LI R, WANG Y, ZHANG C, et al. Non-linear conductivity epoxy/SiC composites for emerging power module packaging: fabrication, characterization and application[J]. Materials (Basel, Switzerland), 2020, 13(15): E3278. [30] HASEGAWA T, ABE H, IKEUCHI T. Wafer level compression molding compounds[C]//2012 IEEE 62nd Electronic Components and Technology Conference, San Diego, CA, USA, 2012: 1400-1405. [31] UM H J, JU Y M, LEE D W, et al. Reduced warpage in semiconductor packages: optimizing post-cure temperature profile considering cure shrinkage and viscoelasticity of epoxy molding compound[J]. Materials & Design, 2024, 245: 113265. [32] LI Z, QIN Z D, LI C X, et al. Fabrication of NiO and TiO2 supported nano calcium carbonate and its effect on the flame retardancy and thermal stability of epoxy resin composites[J]. Polymer Degradation and Stability, 2023, 210: 110296. [33] 王作艺, 严雨行, 邓二平, 等. 环氧树脂高温热老化反应对器件功率循环寿命的影响机理[J]. 半导体技术, 2024, 49(9): 858-866. [34] ZHAO G, WU K N, ZHANG Z L, et al. Novel recyclable epoxy resin with releasable residual stress and synergistically enhanced dielectric properties and healing ability[J]. Polymer, 2024, 311: 127569. [35] 吴旭东. 改性氮化硼/环氧树脂导热绝缘复合材料的制备与性能研究[D]. 杭州: 浙江大学, 2024. [36] 许虎, 王婷婷, 高军鹏, 等. 基于三蝶烯衍生物的环氧树脂低介电改性研究[J]. 民用飞机设计与研究, 2024(3): 106-111. [37] 华文博, 邓二平, 刘鹏, 等. 环氧树脂对功率器件键合线寿命的影响分析[J]. 机车电传动, 2023(5): 92-100.
|