电子与封装 ›› 2025, Vol. 25 ›› Issue (3): 030106 . doi: 10.16257/j.cnki.1681-1070.2025.0058
所属专题: 第三代半导体功率电子封装技术
• “第三代半导体功率电子封装技术”专题 • 上一篇 下一篇
王一平1,2,于铭涵2,王润泽1,佟子睿1,冯佳运1,田艳红1,2
收稿日期:
2024-11-07
出版日期:
2025-03-28
发布日期:
2025-01-20
作者简介:
王一平(1995—),男,黑龙江哈尔滨人,博士研究生,主要研究方向为功率器件热管理、纳米烧结浆料、电子封装可靠性。
WANG Yiping1,2, YU Minghan2, WANG Runze1, TONG Zirui1, FENG Jiayun1, TIAN Yanhong1,2
Received:
2024-11-07
Online:
2025-03-28
Published:
2025-01-20
摘要: 随着电力电子器件材料的发展,第三代宽禁带半导体(如SiC和GaN)因其优越的性能而成为功率器件的理想材料。然而,面对大功率和高温应用的挑战,传统的锡基封装材料已经难以满足需求,为此,研究者们开始关注可以低温烧结、高温服役的纳米烧结浆料。这些微米、纳米级的铜、银等浆料可以在远低于金属熔点的温度下烧结成具备高熔点、高导热、高性能的焊点结构。从烧结材料、烧结工艺、烧结机理3个方面讨论了近年来用于功率器件封装的烧结浆料的研究进展,具体包括纳米银、纳米铜、铜银复合和其他纳米级烧结材料,以及它们适配的热压烧结、无压烧结、薄膜烧结等工艺,为烧结浆料的进一步发展提供参考。
中图分类号:
王一平,于铭涵,王润泽,佟子睿,冯佳运,田艳红. 功率器件封装纳米浆料材料与低温烧结工艺及机理研究进展*[J]. 电子与封装, 2025, 25(3): 030106 .
WANG Yiping, YU Minghan, WANG Runze, TONG Zirui, FENG Jiayun, TIAN Yanhong. Advances in Nanopaste Materials and Low Temperature Sintering Process and Mechanism for Power Device Packaging[J]. Electronics & Packaging, 2025, 25(3): 030106 .
[1] LI Z Q, YAN T T, FANG X S. Low-dimensional wide-bandgap semiconductors for UV photodetectors[J]. Nature Reviews Materials, 2023, 8: 587-603. [2] KIM J, BAYRAM C, PARK H, et al. Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene[J]. Nature Communications, 2014, 5: 4836. [3] WOODS-ROBINSON R, HAN Y B, ZHANG H Y, et al. Wide band gap chalcogenide semiconductors[J]. Chemical Reviews, 2020, 120(9): 4007-4055. [4] RAFIN S M S H, AHMED R, HAQUE M A, et al. Power electronics revolutionized: A comprehensive analysis of emerging wide and ultrawide bandgap devices[J]. Micromachines, 2023, 14(11): 2045. [5] IMBRUGLIA A, GENNARO F, DI MARCO G. Silicon and wide bandgap technologies in automotive power electronics and their applications[C]// 2021 AEIT International Conference on Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE), Torino, Italy, 2021: 1-4. [6] SAKTHI S R J S, SIVARAMAN P, PREM P, et al. Wide band gap semiconductor material for electric vehicle charger[J]. Materials Today: Proceedings, 2021, 45: 852-856. [7] SERKAN ?, PO?PO? P, UTALAY V, et al. Operating principles and practical design aspects of all SiC DC/AC/DC converter for MPPT in grid-connected PV supplies[J]. Solar Energy, 2018, 176: 380-394. [8] REGATTI J R, YOU H Y, WANG H, et al. A discussion of artificial intelligence applications in SiC MOSFET device operation[C]// 2021 IEEE International Electric Machines & Drives Conference (IEMDC), Hartford, CT, USA, 2021: 1-5. [9] KODA R, MIHARA T, INOUE K, et al. Transmission of larger amplitude ultrasound with SiC transistor pulser for subharmonic signal measurements at closed cracks[J]. Physics Procedia, 2015, 70: 528-531. [10] CHEN Z B, HUANG A Q. Extreme high efficiency enabled by silicon carbide (SiC) power devices[J]. Materials Science in Semiconductor Processing, 2024, 172: 108052. [11] SHENG K. Maximum junction temperatures of SiC power devices[J]. IEEE Transactions on Electron Devices, 2009, 56(2): 337-342. [12] LYU Y G, ZHANG G P, WANG Q W, et al. Thermal management technologies used for high heat flux automobiles and aircraft: A review[J]. Energies, 2022, 15(21): 8316. [13] HOU F Z, SUN Z X, SU M Y, et al. Review of die-attach materials for SiC high-temperature packaging[J]. IEEE Transactions on Power Electronics, 2024, 39(10): 13471-13486. [14] 董红杰, 赵洪运, 宋晓国, 等. Ni-Cu低温TLP扩散连接接头组织及性能[J]. 焊接学报, 2017, 38(10): 125-128, 134. [15] ANDERSON W T. Semiconductor device reliability in extreme high temperature space environments[C]// 2001 IEEE Aerospace Conference Proceedings, Big Sky, MT, USA, 2001. [16] 李金龙, 谈侃侃, 张志红, 等. AuSn合金在电子封装中的应用及研究进展[J]. 微电子学, 2012, 42(4): 539-546. [17] 田艳红. 微纳连接原理与方法[M]. 哈尔滨: 哈尔滨工业大学出版社, 2023. [18] YIN L, YANG F, BAO X, et al. Low-temperature sintering of Ag nanoparticles for high-performance thermoelectric module design[J]. Nature Energy, 2023, 8(7): 665-674. [19] YU F W, WANG K, LIU J H, et al. Ag-Sn bimetallic nanoparticles paste for high temperature service in power devices[J]. Nanotechnology, 2020, 31(34): 345204. [20] AGYAKWA P A, ROBERTSON S, DAI J R, et al. Microstructural response of highly porous sintered nano-silver particle die attachments to thermomechanical cycling[J]. Journal of Electronic Materials, 2024, 53(3): 1374-1398. [21] KHAZAKA R, MENDIZABAL L, HENRY D, et al. Survey of high-temperature reliability of power electronics packaging components[J]. IEEE Transactions on Power Electronics, 2015, 30(5): 2456-2464. [22] ZHU S L, NGUYEN M T, YONEZAWA T. Micro-and nano-encapsulated metal and alloy-based phase-change materials for thermal energy storage[J]. Nanoscale Advances, 2021, 3(16): 4626-4645. [23] MEKUYE B, ABERA B. Nanomaterials: An overview of synthesis, classification, characterization, and applications[J]. Nano Select, 2023, 4(8): 486-501. [24] WANG J T, CHEN S, ZHANG L B, et al. Brief review of nanosilver sintering: Manufacturing and reliability[J]. Journal of Electronic Materials, 2021, 50(10): 5483-5498. [25] HU L B, KIM H S, LEE J Y, et al. Scalable coating and properties of transparent, flexible, silver nanowire electrodes[J]. ACS Nano, 2010, 4(5): 2955-2963. [26] WANG X D, ZHANG Y F, ZHANG X J, et al. A highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics[J]. Advanced Materials, 2018, 30(12): e1706738. [27] SUN B W, XU J, HONG W, et al. Universal assembly of ordered Ag nanowire micromesh conductors on arbitrary substrates by manipulating the contact angle[J]. Journal of Materials Chemistry A, 2023, 11(12): 6440-6451. [28] PENG P, HU A M, GERLICH A P, et al. Joining of silver nanomaterials at low temperatures: Processes, properties, and applications[J]. ACS Applied Materials & Interfaces, 2015, 7(23): 12597-12618. [29] SCHWARZBAUER H. Method of securing electronic components to a substrate: US4810672[P]. 1989-03-07. [30] IDE E, ANGATA S, HIROSE A, et al. Metal-metal bonding process using Ag metallo-organic nanoparticles[J]. Acta Materialia, 2005, 53(8): 2385-2393. [31] SIOW K S. Mechanical properties of nano-silver joints as die attach materials[J]. Journal of Alloys and Compounds, 2012, 514: 6-19. [32] FU S C, MEI Y H, LU G Q, et al. Pressureless sintering of nanosilver paste at low temperature to join large area (≥100 mm2) power chips for electronic packaging[J]. Materials Letters, 2014, 128: 42-45. [33] MANIKAM V R, CHEONG K Y. Die attach materials for high temperature applications: A review[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011, 1(4): 457-478. [34] WANG S, LI M Y, JI H J, et al. Rapid pressureless low-temperature sintering of Ag nanoparticles for high-power density electronic packaging[J]. Scripta Materialia, 2013, 69(11/12): 789-792. [35] MARUYAMA M, MATSUBAYASHI R, IWAKURO H, et al. Silver nanosintering: A lead-free alternative to soldering[J]. Applied Physics A, 2008, 93(2): 467-470. [36] MORISADA Y, NAGAOKA T, FUKUSUMI M, et al. A low-temperature pressureless bonding process using a trimodal mixture system of Ag nanoparticles[J]. Journal of Electronic Materials, 2011, 40(12): 2398-2402. [37] WANG T, CHEN X, LU G Q, et al. Low-temperature sintering with nano-silver paste in die-attached interconnection[J]. Journal of Electronic Materials, 2007, 36(10): 1333-1340. [38] PAKNEJAD S A, DUMAS G, WEST G, et al. Microstructure evolution during 300 ℃ storage of sintered Ag nanoparticles on Ag and Au substrates[J]. Journal of Alloys and Compounds, 2014, 617: 994-1001. [39] CHEN C T, ZHANG Z, ZHANG B W, et al. Micron-sized Ag flake particles direct die bonding on electroless Ni-P-finished DBC substrate: Low-temperature pressure-free sintering, bonding mechanism and high-temperature aging reliability[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(2): 1247-1256. [40] YANG C, WONG C P, YUEN M M F. Printed electrically conductive composites: Conductive filler designs and surface engineering[J]. Journal of Materials Chemistry C, 2013, 1(26): 4052-4069. [41] PAKNEJAD S A, MANNAN S H. Review of silver nanoparticle based die attach materials for high power/temperature applications[J]. Microelectronics Reliability, 2017, 70: 1-11. [42] LI M Y, XIAO Y, ZHANG Z H, et al. Bimodal sintered silver nanoparticle paste with ultrahigh thermal conductivity and shear strength for high temperature thermal interface material applications[J]. ACS Applied Materials & Interfaces, 2015, 7(17): 9157-9168. [43] JIU J T, ZHANG H, KOGA S, et al. Simultaneous synthesis of nano and micro-Ag particles and their application as a die-attachment material[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(9): 7183-7191. [44] SAKAMOTO S, SUGANUMA K. Thermo mechanical reliability of low-temperature low-pressure die bonding using thin Ag flake pastes[C]// 2012 7th International Conference on Integrated Power Electronics Systems (CIPS), Nuremberg, 2012. [45] SOICHI S, SUGANUMA K. Low-temperature and low-pressure die bonding using thin Ag-flake and Ag-particle pastes for power devices[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3(6): 923-929. [46] SAKAMOTO S, NAGAO S, SUGANUMA K. Thermal fatigue of Ag flake sintering die-attachment for Si/SiC power devices[J]. Journal of Materials Science: Materials in Electronics, 2013, 24(7): 2593-2601. [47] ZHANG Z, CHEN C T, SUETAKE A, et al. Pressureless and low-temperature sinter-joining on bare Si, SiC and GaN by a Ag flake paste[J]. Scripta Materialia, 2021, 198: 113833. [48] LI W L, LI Y T, WANG Y J, et al. Pressureless sinter-joining of micron-Ag flake pastes at 160 ℃ enabled by solvent and interface engineering[J]. Journal of Materials Processing Technology, 2023, 322: 118207. [49] YEOM J, NAGAO S, CHEN C T, et al. Ag particles for sinter bonding: Flakes or spheres?[J]. Applied Physics Letters, 2019, 114(25): 253103. [50] CHEN C T, SUGANUMA K. Microstructure and mechanical properties of sintered Ag particles with flake and spherical shape from nano to micro size[J]. Materials & Design, 2019, 162: 311-321. [51] KAHLER J, HEUCK N, WAGNER A, et al. Sintering of copper particles for die attach[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2012, 2(10): 1587-1591. [52] KRISHNAN S, HASEEB A S M A, JOHAN M R. Preparation and low-temperature sintering of Cu nanoparticles for high-power devices[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2(4): 587-592. [53] LI J J, LIANG Q, SHI T L, et al. Design of Cu nanoaggregates composed of ultra-small Cu nanoparticles for Cu-Cu thermocompression bonding[J]. Journal of Alloys and Compounds, 2019, 772: 793-800. [54] LIU X D, NISHIKAWA H. Low-pressure Cu-Cu bonding using in situ surface-modified microscale Cu particles for power device packaging[J]. Scripta Materialia, 2016, 120: 80-84. [55] ZUO Y, SHEN J, XIE J C, et al. Influence of Cu micro/nano-particles mixture and surface roughness on the shear strength of Cu-Cu joints[J]. Journal of Materials Processing Technology, 2018, 257: 250-256. [56] PENG Y, MOU Y, LIU J X, et al. Fabrication of high-strength Cu-Cu joint by low-temperature sintering micron-nano Cu composite paste[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(11): 8456-8463. [57] ZUO Y, SHEN J, XU H, et al. Effect of different sizes of Cu nanoparticles on the shear strength of Cu-Cu joints[J]. Materials Letters, 2017, 199: 13-16. [58] HERMERSCHMIDT F, BURMEISTER D, LIGORIO G, et al. Truly low temperature sintering of printed copper ink using formic acid[J]. Advanced Materials Technologies, 2018, 3(12): 1800146. [59] KIM I, KIM J. The effect of reduction atmospheres on the sintering behaviors of inkjet-printed Cu interconnectors[J]. Journal of Applied Physics, 2010, 108(10): 102807. [60] LIU J D, CHEN H T, JI H J, et al. Highly conductive Cu-Cu joint formation by low-temperature sintering of formic acid-treated Cu nanoparticles[J]. ACS Applied Materials & Interfaces, 2016, 8(48): 33289-33298. [61] REN H, MU F W, SHIN S, et al. Low temperature Cu bonding with large tolerance of surface oxidation[J]. AIP Advances, 2019, 9(5): 055127. [62] CUI Z, JIA Q, WANG Y S, et al. Enhanced shear strength and microstructure of Cu-Cu interconnection by low-temperature sintering of Cu nanoparticles[J]. Journal of Materials Science: Materials in Electronics, 2024, 35(11): 743. [63] MATSUDA T, YAMAGIWA D, FURUSAWA H, et al. Reduction behavior of surface oxide on submicron copper particles for pressureless sintering under reducing atmosphere[J]. Journal of Electronic Materials, 2022, 51(1): 1-7. [64] KWON S, LEE T I, LEE H J, et al. Improved sinterability of micro-scale copper paste with a reducing agent[J]. Materials Letters, 2020, 269: 127656. [65] GAO Y, LI W L, CHEN C T, et al. Novel copper particle paste with self-reduction and self-protection characteristics for die attachment of power semiconductor under a nitrogen atmosphere[J]. Materials & Design, 2018, 160: 1265-1272. [66] YUAN Y L, WU H Y, LI J J, et al. Cu-Cu joint formation by low-temperature sintering of self-reducible Cu nanoparticle paste under ambient condition[J]. Applied Surface Science, 2021, 570: 151220. [67] ZUO Y, CARTER-SEARJEANT S, GREEN M, et al. Low temperature Cu joining by in situ reduction-sintering of CuO nanoparticle for high power electronics[J]. Advanced Powder Technology, 2020, 31(10): 4135-4144. [68] DAI X F, XU W, ZHANG T, et al. Room temperature sintering of Cu-Ag core-shell nanoparticles conductive inks for printed electronics[J]. Chemical Engineering Journal, 2019, 364: 310-319. [69] NG K H, PENNER R M. Electrodeposition of silver-copper bimetallic particles having two archetypes by facilitated nucleation[J]. Journal of Electroanalytical Chemistry, 2002, 522(1): 86-94. [70] 卢北虎, 方佳, 彭戴, 等. 银包铜粉的制备与应用现状[J]. 船电技术, 2024, 44(10): 7-11. [71] YANG G N, ZOU Q Y, WANG P Y, et al. Towards understanding the facile synthesis of well-covered Cu-Ag core-shell nanoparticles from a complexing model[J]. Journal of Alloys and Compounds, 2021, 874: 159900. [72] NJAGI J I, NETZBAND C M, GOIA D V. Deposition of hermetic silver shells onto copper flakes[J]. Journal of Colloid and Interface Science, 2017, 488: 72-78. [73] JUNG D S, LEE H M, KANG Y C, et al. Air-stable silver-coated copper particles of sub-micrometer size[J]. Journal of Colloid and Interface Science, 2011, 364(2): 574-581. [74] 刘晓剑. Ag-Cu超饱和固溶体纳米颗粒纳米冶金及抗电化学迁移机理[D]. 哈尔滨: 哈尔滨工业大学, 2017. [75] YAN J F, ZOU G S, ZHANG Y C, et al. Metal-metal bonding process using Cu+Ag mixed nanoparticles[J]. Materials Transactions, 2013, 54(6): 879-883. [76] 江智. 铜银核壳纳米颗粒焊膏制备及低温烧结机理[D]. 哈尔滨: 哈尔滨工业大学, 2016. [77] WANG K F, WEN J Y, FENG J Y, et al. A novel Cu@Ag nano paste with low porosity for rapidly sintering in air condition[J]. Materials Characterization, 2024, 209: 113762. [78] LONG X, LI Z, LU X Z, et al. Mechanical behaviour of sintered silver nanoparticles reinforced by SiC microparticles[J]. Materials Science and Engineering: A, 2019, 744: 406-414. [79] HU B, YANG F, PENG Y, et al. Effect of SiC reinforcement on the reliability of Ag nanoparticle paste for high-temperature applications[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(3): 2413-2418. [80] ZHANG H, NAGAO S, SUGANUMA K. Addition of SiC particles to Ag die-attach paste to improve high-temperature stability; grain growth kinetics of sintered porous Ag[J]. Journal of Electronic Materials, 2015, 44(10): 3896-3903. [81] ZHAO P H, LI X, MEI Y H, et al. High thermal conductivity diamond-doped silver paste for power electronics packaging[J]. Materials Letters, 2022, 311: 131603. [82] XU Y X, QIU X M, LI W Y, et al. Development of high thermal conductivity of Ag/diamond composite sintering paste and its thermal shock reliability evaluation in SiC power modules[J]. Journal of Materials Research and Technology, 2023, 26: 1079-1093. [83] WANG J H, YODO S, TATSUMI H, et al. Thermal conductivity and reliability reinforcement for sintered microscale Ag particle with AlN nanoparticles additive[J]. Materials Characterization, 2023, 203: 113150. [84] DAI Y W, ZAN Z, ZHAO S, et al. Shearing fracture toughness enhancement for sintered silver with nickel coated multiwall carbon nanotubes additive[J]. Engineering Fracture Mechanics, 2022, 260: 108181. [85] SUN L, CHEN M H, ZHANG L, et al. Recent progress in SLID bonding in novel 3D-IC technologies[J]. Journal of Alloys and Compounds, 2020, 818: 152825. [86] ZHANG R, TIAN Y H, LIU B L, et al. Growth mechanism of Cu-Sn full IMC joints on polycrystalline and single crystal Cu substrate[C]// 2013 14th International Conference on Electronic Packaging Technology, Dalian, China, 2013: 1276-1279. [87] YIN Z Z, SUN F L, GUO M J. The fast formation of full Cu3Sn solder joints in Cu/Sn/Cu system by thermal gradient bonding[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(3): 2146-2153. [88] YANG T L, AOKI T, MATSUMOTO K, et al. Full intermetallic joints for chip stacking by using thermal gradient bonding[J]. Acta Materialia, 2016, 113: 90-97. [89] YIN Z Z, SUN F L, GUO M J. The fast formation of Cu-Sn intermetallic compound in Cu/Sn/Cu system by induction heating process[J]. Materials Letters, 2018, 215: 207-210. [90] LIU W, WEN Z C, XU J H, et al. Rapid fabrication of Cu/40-μm thick full Cu3Sn/Cu joints by applying pulsed high frequency electromagnetic field for high power electronics[J]. Materials Chemistry and Physics, 2022, 276: 125386. [91] LAI Y Q, XU R S, CHEN S, et al. Rapid formation, grain refinement and shear property of high-temperature-stable full IMC joints[J]. Journal of Materials Research and Technology, 2023, 24: 6146-6158. [92] AN R, TIAN Y H, ZHANG R, et al. Electromigration-induced intermetallic growth and voids formation in symmetrical Cu/Sn/Cu and Cu/Intermetallic compounds (IMCs)/Cu joints[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(5): 2674-2681. [93] ZHONG Y, AN R, WANG C Q, et al. Low temperature sintering Cu6Sn5 nanoparticles for superplastic and super-uniform high temperature circuit interconnections[J]. Small, 2015, 11(33): 4097-4103. [94] ZHONG Y, AN R, MA H W, et al. Low-temperature-solderable intermetallic nanoparticles for 3D printable flexible electronics[J]. Acta Materialia, 2019, 162: 163-175. [95] GUO L J, LIU W, WANG C Q. Preparation and sintering properties of Cu10Sn3 IMCs nanopaste as die attach material for high temperature power electronics[J]. Materials Letters, 2021, 282: 128845. [96] GUO L J, LIU W, JI X L, et al. Robust Cu-Cu bonding with multiscale coralloid nano-Cu3Sn paste for high-power electronics packaging[J]. ACS Applied Electronic Materials, 2022, 4(7): 3457-3469. [97] LIU X D, HE S L, NISHIKAWA H. Thermally stable Cu3Sn/Cu composite joint for high-temperature power device[J]. Scripta Materialia, 2016, 110: 101-104. [98] 王一平. Sn复合纳米Cu颗粒快速制备全Cu-Sn IMC焊点方法及机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. [99] JUNG K H, MIN K D, LEE C J, et al. Pressureless die attach by transient liquid phase sintering of Cu nanoparticles and Sn-58Bi particles assisted by polyvinylpyrrolidone dispersant[J]. Journal of Alloys and Compounds, 2019, 781: 657-663. [100] YU F W, LIU H, HANG C J, et al. Rapid formation of full intermetallic bondlines for die attachment in high-temperature power devices based on micro-sized Sn-coated Ag particles[J]. JOM, 2019, 71(9): 3049-3056. [101] LIU J H, WANG K, YU F W, et al. A paste based on Cu@Sn@Ag particles for die attachment under ambient atmosphere in power device packaging[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(3): 1808-1816. [102] TSAI C H, HUANG W C, CHEW L M, et al. Low-pressure micro-silver sintering with the addition of indium for high-temperature power chips attachment[J]. Journal of Materials Research and Technology, 2021, 15: 4541-4553. [103] WANG J H, LIU X D, HUO F P, et al. Novel transient liquid phase bonding method using in-coated Cu sheet for high-temperature die attach[J]. Materials Research Bulletin, 2022, 149: 111713. [104] PAKNEJAD S A, DUMAS G, WEST G, et al. Microstructure evolution during 300 ℃ storage of sintered Ag nanoparticles on Ag and Au substrates[J]. Journal of Alloys and Compounds, 2014, 617: 994-1001. [105] ISHIZAKI T, AKEDO K, SATOH T, et al. Pressure-free bonding of metallic plates with Ni affinity layers using Cu nanoparticles[J]. Journal of Electronic Materials, 2014, 43(3): 774-779. [106] Kim D, Chen C, Lee S J, et al. Strengthening of DBA substrate with Ni/Ti/Ag metallization for thermal fatigue-resistant Ag sinter joining in GaN power modules[J]. Journal of Materials Science: Materials in Electronics, 2022, 31(4): 3715-3726. [107] XU Q Y, MEI Y H, LI X, et al. Correlation between interfacial microstructure and bonding strength of sintered nanosilver on ENIG and electroplated Ni/Au direct-bond-copper (DBC) substrates[J]. Journal of Alloys and Compounds, 2016, 675: 317-324. [108] CHEN C T, SUGANUMA K, IWASHIGE T, et al. High-temperature reliability of sintered microporous Ag on electroplated Ag, Au, and sputtered Ag metallization substrates[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(3): 1785-1797. [109] CHUA S T, SIOW K S. Microstructural studies and bonding strength of pressureless sintered nano-silver joints on silver, direct bond copper (DBC) and copper substrates aged at 300 ℃[J]. Journal of Alloys and Compounds, 2016, 687: 486-498. [110] LIU Y, CHEN C T, ZHANG Z, et al. Development of crack-less and deformation-resistant electroplated Ni/electroless Ni/Pt/Ag metallization layers for Ag-sintered joint during a harsh thermal shock[J]. Materials & Design, 2022, 224: 111389. [111] JIA Q, DENG Z Y, LIU L, et al. Interface enhancing strategy for low-temperature bonding of Ag-based nanoalloy[J]. Materials Letters, 2023, 339: 134050. [112] WU Y C, ZOU G S, WANG S Q, et al. Interfacial bonding mechanisms of sintered Cu nanoparticles on different metallization surfaces[J]. Surfaces and Interfaces, 2024, 46: 104173. [113] PEDERSEN K B, PEDERSEN K. Dynamic modeling method of electro-thermo-mechanical degradation in IGBT modules[J]. IEEE Transactions on Power Electronics, 31(2): 975-986. [114] CHEN C T, KIM D, WANG Z H, et al. Low temperature low pressure solid-state porous Ag bonding for large area and its high-reliability design in die-attached power modules[J]. Ceramics International, 2019, 45(7): 9573-9579. [115] ZHANG B W, CHEN C T, SEKIGUCHI T, et al. Development of anti-oxidation Ag salt paste for large-area (35 × 35 mm2) Cu-Cu bonding with ultra-high bonding strength[J]. Journal of Materials Science & Technology, 2022, 113: 261-270. [116] Wang M, Mei Y H, Jin J, et al. Pressureless sintered-silver die-attach at 180 ℃ for power electronics packaging[J]. IEEE Transactions on Power Electronics, 2021, 36(11): 12141-12145. [117] LI Y, JING H Y, HAN Y D, et al. Microstructure and joint properties of nano-silver paste by ultrasonic-assisted pressureless sintering[J]. Journal of Electronic Materials, 2016, 45(6): 3003-3012. [118] JI H J, ZHOU J B, LIANG M, et al. Ultra-low temperature sintering of Cu@Ag core-shell nanoparticle paste by ultrasonic in air for high-temperature power device packaging[J]. Ultrasonics Sonochemistry, 2018, 41: 375-381. [119] XIE Y J, WANG Y J, MEI Y H, et al. Rapid sintering of nano-Ag paste at low current to bond large area (>100 mm2) power chips for electronics packaging[J]. Journal of Materials Processing Technology, 2018, 255: 644-649. [120] 黄圆, 田艳红, 江智, 等. 脉冲电流快速烧结纳米铜焊膏连接铜镍基板研究[J]. 机械工程学报, 2017, 53(4): 34-42. [121] LIU W, WANG Y P, ZHENG Z, et al. Laser sintering mechanism and shear performance of Cu-Ag-Cu joints with mixed bimodal size Ag nanoparticles[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(8): 7787-7793. [122] OGURA T, TAKATA S, TAKAHASHI M, et al. Effects of reducing solvent on copper, nickel, and aluminum joining using silver nanoparticles derived from a silver oxide paste[J]. Materials Transactions, 2015, 56(7): 1030-1036. [123] MOHD Z N S, ZHANG H Q, ZOU G S, et al. Large-area die-attachment sintered by organic-free Ag sintering material at low temperature[J]. Journal of Electronic Materials, 2019, 48(11): 7562-7572. [124] HEUCK N, MüLLER S, PALM G, et al. Swelling phenomena in sintered silver die attach structures at high temperatures: Reliability problems and solutions for an operation above 350 ℃[J]. Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT), 2010, 2010: 18-25. [125] WANG W G, ZOU G S, JIA Q, et al. Mechanical properties and microstructure of low temperature sintered joints using organic-free silver nanostructured film for die attachment of SiC power electronics[J]. Materials Science and Engineering: A, 2020, 793: 139894. [126] FENG B, SHEN D Z, WANG W G, et al. Cooperative bilayer of lattice-disordered nanoparticles as room-temperature sinterable nanoarchitecture for device integrations[J]. ACS Applied Materials & Interfaces, 2019, 11(18): 16972-16980. [127] WU Y C, ZOU G S, WANG S Q, et al. Rapid and low temperature sintering bonding using Cu nanoparticle film for power electronic packaging[J]. Applied Surface Science, 2022, 603: 154422. [128] JIA Q, ZOU G S, ZHANG H Q, et al. Sintering mechanism of Ag-Pd nanoalloy film for power electronic packaging[J]. Applied Surface Science, 2021, 554: 149579. [129] JIA Q, ZOU G S, WANG W G, et al. Sintering mechanism of a supersaturated Ag-Cu nanoalloy film for power electronic packaging[J]. ACS Applied Materials & Interfaces, 2020, 12(14): 16743-16752. [130] JIA Q, DENG Z Y, LIU L, et al. Interface enhancing strategy for low-temperature bonding of Ag-based nanoalloy[J]. Materials Letters, 2023, 339: 134050. [131] CHEN C T, NOH S, ZHANG H, et al. Bonding technology based on solid porous Ag for large area chips[J]. Scripta Materialia, 2018, 146: 123-127. [132] LU D S, WANG X Q, PAN H, et al. Low-temperature direct bonding of sputtered nanocrystalline Ag film for power electronic packaging: Bonding mechanism, thermal characteristics, and reliability[J]. IEEE Transactions on Power Electronics, 2024, 39(5): 6040-6051. [133] WANG C C, TATSUMI H, XU L, et al. Transparent liquid Ag-based complex for the facile preparation of robust sintered Ag joints in power devices[J]. ACS Applied Electronic Materials, 2024, 6(3): 1718-1728. [134] KOGA S, NISHIKAWA H, SAITO M, et al. Fabrication of nanoporous Cu sheet and application to bonding for high-temperature applications[J]. Journal of Electronic Materials, 2020, 49(3): 2151-2158. [135] LANGE A P, SAMANTA A, MAJIDI H, et al. Dislocation mediated alignment during metal nanoparticle coalescence[J]. Acta Materialia, 2016, 120: 364-378. [136] LIU X, LI S Z, FAN J J, et al. Microstructural evolution, fracture behavior and bonding mechanisms study of copper sintering on bare DBC substrate for SiC power electronics packaging[J]. Journal of Materials Research and Technology, 2022, 19: 1407-1421. [137] 吴芃, 王一平, 杨东升, 等. 纳米银浆料烧结机理及导热性能分子动力学仿真[J]. 焊接学报, 2023, 44(12): 1-7. [138] WANG C C, LI G, XU L, et al. Low temperature sintered silver nanoflake paste for power device packaging and its anisotropic sintering mechanism[J]. ACS Applied Electronic Materials, 2021, 3(12): 5365-5373. [139] LIN S K, NAGAO S, YOKOI E, et al. Nano-volcanic eruption of silver[J]. Scientific Reports, 2016, 6: 34769. [140] CHEN C T, CHOE C, KIM D, et al. Effect of oxygen on microstructural coarsening behaviors and mechanical properties of Ag sinter paste during high-temperature storage from macro to micro[J]. Journal of Alloys and Compounds, 2020, 834: 155173. [141] ZHANG H, GAO Y, JIU J T, et al. In situ bridging effect of Ag2O on pressureless and low-temperature sintering of micron-scale silver paste[J]. Journal of Alloys and Compounds, 2017, 696: 123-129. [142] LEE Y J, LEE J H. Ultrafast sinter bonding between Cu finishes under moderate compression using in situ derived Ag formed via low-temperature decomposition of Ag2O in the bonding paste[J]. Metals and Materials International, 2023, 29(6): 1775-1785. |
[1] | 边乐陶,刘文婷,刘盼. 高功率电子封装中大面积烧结技术研究进展*[J]. 电子与封装, 2025, 25(3): 30108-. |
[2] | 兰梦伟,姬峰,王成伟,孙浩洋,杜建宇,徐晋宏,王晶,张鹏哲,王明伟. 大功率器件基板散热技术研究进展*[J]. 电子与封装, 2025, 25(3): 30111-. |
[3] | 王秀琦,李一凡,罗子康,陆大世,计红军. 功率器件封装用纳米铜焊膏及其烧结技术研究进展*[J]. 电子与封装, 2025, 25(3): 30101-. |
[4] | 喻龙波,夏志东,邓文皓,林文良,周炜,郭福. 乙基纤维素影响下的微米银焊膏和纳米银焊膏烧结对比研究*[J]. 电子与封装, 2025, 25(3): 30102-. |
[5] | 逄卓,赵海强,徐涛涛,张浩波,王美玉. 烧结银阵列互连双面散热SiC半桥模块的散热和应力仿真*[J]. 电子与封装, 2025, 25(3): 30103-. |
[6] | 王一帆,汪根深,孙德旺,陆冰沪,章玮,李明钢. 纳米铜粉的制备方法及其在电子封装行业的应用[J]. 电子与封装, 2025, 25(3): 30110-. |
[7] | 郑佳宝, 李照天, 张晨如, 刘俐. 第三代半导体封装结构设计及可靠性评估技术研究进展*[J]. 电子与封装, 2025, 25(3): 30104-. |
[8] | 闫海东,蒙业惠,刘昀粲,刘朝辉. 基于低温铜烧结技术的大功率碳化硅模块电热性能表征*[J]. 电子与封装, 2025, 25(3): 30107-. |
[9] | 王文哲,李权震,余胜涛,笪贤豪,何伟伟,杨冠南,崔成强. 基于纳米铜膏的导电结构激光并行扫描烧结成型技术*[J]. 电子与封装, 2025, 25(1): 10402-. |
[10] | 李志豪,汪松英,洪少健,孙啸寒,曾世堂,杜昆. 镀银板表面粗糙度对纳米银焊膏快速烧结互连质量的影响[J]. 电子与封装, 2024, 24(7): 70201-. |
[11] | 徐达,戎子龙,杨彦锋,魏少伟,马紫成. 基于ENEPIG镀层的无压纳米银膏烧结失效分析[J]. 电子与封装, 2024, 24(4): 40204-. |
[12] | 杨兴宇,马其琪,张艳辉,贾少雄. 基于压力辅助烧结方法改善LTCC基板翘曲的研究[J]. 电子与封装, 2024, 24(4): 40205-. |
[13] | 于鹏举, 代岩伟, 秦飞. 基于SVR数据驱动模型的SiC功率器件关键互连结构热疲劳寿命预测研究*[J]. 电子与封装, 2024, 24(12): 120201-. |
[14] | 孙浩洋, 姬峰, 张晓宇, 兰梦伟, 李鑫宇, 冯青华, 兰元飞, 王明伟. 面向大功率器件散热的金刚石基板微流道仿真研究*[J]. 电子与封装, 2024, 24(11): 110204-. |
[15] | 张坤,徐广东,李权震,杨冠南,张昱,崔成强. 激光烧结纳米铜膏成型线路的清洗工艺研究*[J]. 电子与封装, 2023, 23(9): 90206-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
访问总数: 当日访问总数: 当前在线:
版权所有 © 2019-2024 中国电子科技集团公司第五十八研究所 苏ICP备11028747号
地址:江苏省无锡市滨湖区惠河路5号 邮编:214035 电话:0510-85860386(林编辑);0510-85868956(俞编辑,史编辑) 电子邮箱:ep.cetc58@163.com
本系统由北京玛格泰克科技发展有限公司设计开发