电子与封装 ›› 2025, Vol. 25 ›› Issue (3): 030104 . doi: 10.16257/j.cnki.1681-1070.2025.0053
所属专题: 第三代半导体功率电子封装技术
• “第三代半导体功率电子封装技术”专题 • 上一篇 下一篇
郑佳宝,李照天,张晨如,刘俐
收稿日期:
2024-11-15
出版日期:
2025-03-28
发布日期:
2025-01-20
作者简介:
郑佳宝(2002—),男,广东汕尾人,本科在读,主要研究方向为功率电子及宽禁带半导体集成与封装;
ZHENG Jiabao, LI Zhaotian, ZHANG Chenru, LIU Li
Received:
2024-11-15
Online:
2025-03-28
Published:
2025-01-20
摘要: 第三代半导体材料,如SiC和GaN,因其卓越的性能在电力电子领域展现出巨大潜力。为了充分发挥材料的优势,需要通过先进的封装技术来解决电气互连、机械支撑和散热等问题。围绕第三代半导体封装结构的研究进展,从降低寄生电参数、降低热阻、提高集成度3个发展方向分类总结近年来新型封装结构特点及优化效果。基于新型封装结构,总结了其面临的可靠性问题以及现行的可靠性测试标准和方法,探讨了存在的问题和不足,对第三代半导体封装技术的未来发展进行了展望。
中图分类号:
郑佳宝, 李照天, 张晨如, 刘俐. 第三代半导体封装结构设计及可靠性评估技术研究进展*[J]. 电子与封装, 2025, 25(3): 030104 .
ZHENG Jiabao, LI Zhaotian, ZHANG Chenru, LIU Li. Research Progress of Packaging Structure Design and Reliability Evaluation Technology for Third-Generation Semiconductors[J]. Electronics & Packaging, 2025, 25(3): 030104 .
[1] 郝跃, 彭军, 杨银堂. 碳化硅宽带隙半导体技术[M]. 北京: 科学出版社, 2000. [2] 盛况, 董泽政, 吴新科. 碳化硅功率器件封装关键技术综述及展望[J]. 中国电机工程学报, 2019, 39(19): 5576-5584. [3] 张峰, 张国良. 宽禁带半导体碳化硅IGBT器件研究进展与前瞻[J]. 电子与封装, 2023, 23(1): 010109. [4] 曹建武, 罗宁胜, DELATTE P, 等. 碳化硅器件挑战现有封装技术[J]. 电子与封装, 2022, 22(2): 020102. [5] 宁圃奇, 郑丹, 康玉慧, 等. SiC车用电机驱动研究发展与关键技术[J]. 电子与封装, 2022, 22(3): 030101. [6] 杨广明. 基于SiC功率器件的电机控制器应用及发展趋势[R]. 广州:弗迪动力, 2020: 9-16. [7] SCHNAUFER D, GENGLER J, MARTIN R. GaN Technology[M]. New Jersey: John Wiley & Sons, Inc., 2022. [8] JOSIFOVIC I, POPOVIC-GERBER J, FERREIRA J A. Improving SiC JFET switching behavior under influence of circuit parasitics[J]. IEEE Transactions on Power Electronics, 27(8): 3843-3854. [9] KHANNA R, AMRHEIN A, STANCHINA W, et al. An analytical model for evaluating the influence of device parasitics on Cdv/dt induced false turn-on in SiC MOSFETs[C]//2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 2013. [10] NOPPAKUNKAJORN J, HAN D, SARLIOGLU B. Analysis of high-speed PCB with SiC devices by investigating turn-off overvoltage and interconnection inductance influence[J]. IEEE Transactions on Transportation Electrification, 2015, 1(2): 118-125. [11] YIN S, TU P F, WANG P, et al. An accurate subcircuit model of SiC half-bridge module for switching-loss optimization[J]. IEEE Transactions on Industry Applications, 2017, 53(4): 3840-3848. [12] Infineon. SIGC158T170R3E[EB/OL]. (2015-08-19)[2024-10-11]. https://www.infineon.com/dgdl/Infineon-SIGC158T170R3E-DS-v02_04-EN.pdf?fileId=db3a30433c806849013c86e4eb806527. [13] Wolfspeed. CPM3-1700-R020E [EB/OL]. (2023-12-03)[2024-10-11]. https://assets.wolfspeed.com/uploads/2024/02/Wolfspeed_CPM3-1700-R020E_data_sheet.pdf. [14] MARCHESINI J L, JEANNIN P O, AVENAS Y, et al. Implementation and switching behavior of a PCB-DBC IGBT module based on the power chip-on-chip 3-D concept[J]. IEEE Transactions on Industry Applications, 53(1): 362-370. [15] MA D K, XIAO G C, ZHANG T Y, et al. A highly integrated multichip SiC MOSFET power module with optimized electrical and thermal performances[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(2): 1722-1736. [16] LIANG S H, LIANG Y X, SUN P, et al. Design and demonstration of 3D-stacked packaging SiC power module with low parasitic inductance and low thermal resistance[C]//2023 IEEE 2nd International Power Electronics and Application Symposium (PEAS), Guangzhou, China, 2023: 1715-1719. [17] ZHAO Y B, YAN H D, YAN X L, et al. Packaging evaluations of SiC MOSFETs based on Cu-clip interconnection architecture[C]//2024 25th International Conference on Electronic Packaging Technology (ICEPT), Tianjin, China, 2024: 1-5. [18] BECKEDAHL P, BUETOW S, MAUL A, et al. 400 A, 1200 V SiC power module with 1 nH commutation inductance[C]//CIPS 2016; 9th International Conference on Integrated Power Electronics Systems, Nuremberg, Germany, 2016: 1-6. [19] HOU F Z, WANG W B, MA R, et al. Fan-out panel-level PCB-embedded SiC power MOSFETs packaging[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(1): 367-380. [20] WANG J H, LIU Z L, PENG H, et al. A novel intelligent power module in embedded packaging with low parasitic inductance and low thermal resistance[C]//2024 25th International Conference on Electronic Packaging Technology (ICEPT), Tianjin, China, 2024: 1-4. [21] CHEN Z, YAO Y Y, BOROYEVICH D, et al. An ultra-fast SiC phase-leg module in modified hybrid packaging structure[C]//2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 2014: 2880-2886. [22] HUANG Z Z, LI Y X, CHEN L C, et al. A novel low inductive 3D SiC power module based on hybrid packaging and integration method[C]//2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 2017: 3995-4002. [23] YIN L, KAPUSTA C, GOWDA A, et al. A wire-bondless packaging platform for silicon carbide power semiconductor devices[J]. Journal of Electronic Packaging, 2018, 140(3): 031009. [24] LIANG Z X. Integrated double sided cooling packaging of planar SiC power modules[C]//2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 2015: 4907-4912. [25] LIANG Z X. Planar-bond-all: a technology for three-dimensional integration of multiple packaging functions into advanced power modules[C]//2015 IEEE International Workshop on Integrated Power Packaging (IWIPP), Chicago, IL, USA, 2015: 115-118. [26] XU Y, HUSAIN I, WEST H, et al. Development of an ultra-high density power chip on bus (PCoB) module[C]//2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 2016: 1-7. [27] YANG F T, JIA L X, WANG L L, et al. Interleaved planar packaging method of multichip SiC power module for thermal and electrical performance improvement[J]. IEEE Transactions on Power Electronics, 2022, 37(2): 1615-1629. [28] ORTIZ GONZALEZ J, ALIYU A M, ALATISE O, et al. Development and characterisation of pressed packaging solutions for high-temperature high-reliability SiC power modules[J]. Microelectronics Reliability, 2016, 64: 434-439. [29] ZHANG Y F, HAMMAM T, BELOV I, et al. Thermomechanical analysis and characterization of a press-pack structure for SiC power module packaging applications[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(7): 1089-1100. [30] PASCAL Y, ABDEDAIM A, LABROUSSE D, et al. Using laminated metal foam as the top-side contact of a PCB-embedded power die[J]. IEEE Electron Device Letters, 38(10): 1453-1456. [31] PASCAL Y, LABROUSSE D, PETIT M, et al. Experimental investigation of the reliability of printed circuit board (PCB)-embedded power dies with pressed contact made of metal foam[J]. Microelectronics Reliability, 2018, 88-90: 707-714. [32] ZHU N, MANTOOTH H A, XU D H, et al. A solution to press-pack packaging of SiC MOSFETS[J]. IEEE Transactions on Industrial Electronics, 64(10): 8224-8234. [33] DUTTA A, ANG S S. A 3-D stacked wire bondless silicon carbide power module[C]//2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Fayetteville, AR, USA, 2016: 11-16. [34] KOU L, LU J C. Applying GaN HEMTs in conventional housing-type power modules[C]//2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 2020: 4006-4010. [35] EPC. Using Enhancement Mode GaN-on-Silicon Power FETS (EGaN FETS) [EB/OL]. (2023-01-03) [2024-10-15]. https://epc-co.com/epc/design-support/application-notes/an003-using-enhancementmode. [36] JUNG E, WOJAKOWSKI D, NEUMANN A, et al. Chip-in-polymer: volumetric packaging solution using PCB technology[C]//27th Annual IEEE/SEMI International Electronics Manufacturing Technology Symposium, San Jose, CA, USA, 2002: 46-49. [37] DIECKERHOFF S, KIRFE T, WERNICKE T, et al. Electric characteristics of planar interconnect technologies for power MOSFETs[C]//2007 IEEE Power Electronics Specialists Conference, Orlando, FL, USA, 2007: 1036-1042. [38] ROBERTS J. Maximizing GaN power transistor performance with embedded packaging[C]// Proceedings of the Applied Power Electronics Conference (APEC), Charlotte, NC, USA, 2015: 1- 14. [39] ZHANG W L, HUANG X C, LIU Z Y, et al. A new package of high-voltage cascode gallium nitride device for megahertz operation[J]. IEEE Transactions on Power Electronics, 31(2): 1344-1353. [40] IKEDA Y, IIZUKA Y, HINATA Y, et al. Investigation on wirebond-less power module structure with high-density packaging and high reliability[C]//2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs, San Diego, CA, USA, 2011: 272-275. [41] WEILER P, VERMULST B, LEMMEN E, et al. High power GaN module using 3D-printed liquid coolers for hard-switching at megahertz[C]// International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Online, 2021: 1-7. [42] EMON A I, CARLTON H, HARRIS J, et al. A 650 V/60 A gate driver integrated wire-bondless multichip GaN module[C]//2021 IEEE 12th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Chicago, IL, USA, 2021: 1-6. [43] YAN Y, ZHU L Y, WALDEN J, et al. Packaging A top-cooled 650 V/150 A GaN power modules with insulated thermal pads and gate-drive circuit[C]//2021 IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, AZ, USA, 2021: 2345-2050. [44] LAURANT C, DELAINE J, PERICHON P, et al. Very low parasitic inductance double side cooling power modules based on ceramic substrates and GaN devices[C]//2020 IEEE 70th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2020: 1402-1407. [45] LU S C, ZHAO T Y, BURGOS R P, et al. PCB-interposer-on-DBC packaging of 650 V, 120 A GaN HEMTs[C]//2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, 2020: 370-373. [46] JORGENSEN A B, BECZKOWSKI S, UHRENFELDT C, et al. A fast-switching integrated full-bridge power module based on GaN eHEMT devices[J]. IEEE Transactions on Power Electronics, 34(3): 2494-2504. [47] BAJWA A A, QIN Y, WILDE J, et al. Assembly and packaging technologies for high-temperature and high-power GaN HEMTs[C]//2014 IEEE 64th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2014: 2181-2188. [48] 王来利, 赵成, 张彤宇, 等. 碳化硅功率模块封装技术综述[J]. 电工技术学报, 2023, 38(18): 4947-4962. [49] BOETTGE B, NAUMANN F, KLENGEL R, et al. Packaging material issues in high temperature power electronics[C]// 2013 Eurpoean Microelectronics Packaging Conference (EMPC), Grenoble, France, 2013. [50] MARENCO N, KONTEK M, REINERT W, et al. Copper ribbon bonding for power electronics applications[C]// 2013 Eurpoean Microelectronics Packaging Conference (EMPC), Grenoble, France. New York, 2013. [51] LING J, XU T, CHEN R, et al. Cu and Al-Cu composite-material interconnects for power devices[C]//2012 IEEE 62nd Electronic Components and Technology Conference, San Diego, CA, USA, 2012: 1905-1911. [52] STOCKMEIER T, BECKEDAHL P, GOBL C, et al. SKiN: Double side sintering technology for new packages[C]//2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs, San Diego, CA, USA, 2011: 324-327. [53] CHEN C, CHEN Y, LI Y X, et al. An SiC-based half-bridge module with an improved hybrid packaging method for high power density applications[J]. IEEE Transactions on Industrial Electronics, 64(11): 8980-8991. [54] YIN J, LIANG Z X, VAN WYK J D. High temperature embedded SiC chip module (ECM) for power electronics applications[J]. IEEE Transactions on Power Electronics, 2007, 22(2): 392-398. [55] HUANG Z Z, CHEN C, XIE Y, et al. A high-performance embedded SiC power module based on a DBC-stacked hybrid packaging structure[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(1): 351-366. [56] LIU M, COPPOLA A, ALVI M, et al. Comprehensive review and state of development of double-sided cooled package technology for automotive power modules[J]. IEEE Open Journal of Power Electronics, 2022, 3: 271-289. [57] LI H, ZHANG X J, YANG Z T, et al. Research on packaging reliability of LTCC high density packaging substrate with high-CTE[C]//2023 24th International Conference on Electronic Packaging Technology (ICEPT), Shihezi City, China, 2023. [58] SU J Q, LI B, YAO X, et al. A 3D multi-channel amplifier module with fuzz button in LTCC[C]//2023 3rd International Conference on Electronic Information Engineering and Computer (EIECT), Shenzhen, China, 2023: 240-243. [59] YANG F T, JIA L X, WANG L L, et al. The study on thermal coupling effect for SiC power module design guidelines[C]//2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), Suita, Japan, 2020. [60] JANABI A, SHILLABER L, YING W C, et al. Substrate embedded power electronics packaging for silicon carbide MOSFETs[J]. IEEE Transactions on Power Electronics, 2024, 39(8): 9614-9628. [61] KE H T, MEHROTRA U, HOPKINS D C. 3-D prismatic packaging methodologies for wide band gap power electronics modules[J]. IEEE Transactions on Power Electronics, 2021, 36(11): 13057-13066. [62], CHEN C. A review of SiC power module packaging: layout, material system and integration[J]. CPSS Transactions on Power Electronics and Applications, 2017, 2(3): 170-186. [63] 王建冈, 阮新波. 集成电力电子模块封装的关键技术[J]. 电子元件与材料, 2008, 27(4): 1-5. [64] REGNAT G, JEANNIN P O, EWANCHUK J, et al. Optimized power modules for silicon carbide MOSFET[C]//2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 2016. [65] LI B Y, YANG X, WANG K P, et al. A compact double-sided cooling 650 V/30 A GaN power module with low parasitic parameters[J]. IEEE Transactions on Power Electronics, 2022, 37(1): 426-439. [66] GEBRAEL T, LI J Q, GAMBOA A R, et al. High-efficiency cooling via the monolithic integration of copper on electronic devices[J]. Nature Electronics, 2022, 5: 394-402. [67] VAN ERP R, SOLEIMANZADEH R, NELA L, et al. Co-designing electronics with microfluidics for more sustainable cooling[J]. Nature, 2020, 585: 211-216. [68] BERTHOU M, GODIGNON P, BROSSELARD P, et al. Integration of temperature and current sensors in 4H-SiC VDMOS[J]. Materials Science Forum, 2012, 717-720: 1093-1096. [69] BERTHOU M, GODIGNON P, MILLAN J. Monolithically integrated temperature sensor in silicon carbide power MOSFETs[J]. IEEE Transactions on Power Electronics, 2014, 29(9): 4970-4977. [70] 陈志文, 梅云辉, 刘胜, 等. 电子封装可靠性: 过去、现在及未来[J]. 机械工程学报, 2021, 57(16): 248-268. [71] 王春蒙. 功率芯片与器件封装用纳米铜膏制备及烧结性能和接头可靠性研究[D]. 广州: 华南理工大学, 2023. [72] 刘佳欣. 功率器件封装用纳米金属焊膏制备与烧结机制研究[D]. 武汉: 华中科技大学, 2023. [73] LEE B S, YOON J W. Cu-Sn intermetallic compound joints for high-temperature power electronics applications[J]. Journal of Electronic Materials, 2018, 47(1): 430-435. [74] FENG H L, HUANG J H, PENG X W, et al. Microstructural evolution of Ni-Sn transient liquid phase sintering bond during high-temperature aging[J]. Journal of Electronic Materials, 2018, 47(8): 4642-4652. [75] SHAO H K, WU A P, BAO Y D, et al. Elimination of pores in Ag-Sn TLP bonds by the introduction of dissimilar intermetallic phases[J]. Journal of Materials Science, 2017, 52(6): 3508-3519. [76] LIU L, SHI L, PENG J, et al. Interfacial reaction between Sn-Ag solder and electroless Ni-Fe-P diffusion barriers with different internal microstructure[J]. Materials Research Bulletin, 2022, 152: 111854. [77] LIU L, ZHAO B, JIANG B, et al. Microstructure, shear properties and corrosion resistance of Cu/Cu-In/Cu solder joints[J]. Journal of Advanced Joining Processes, 2022, 5: 100093. [78] GAO Y, JIU J T, CHEN C T, et al. Oxidation-enhanced bonding strength of Cu sinter joints during thermal storage test[J]. Journal of Materials Science & Technology, 2022, 115: 251-255. [79] ZHANG Z, CHEN C T, SUETAKE A, et al. Pressureless and low-temperature sinter-joining on bare Si, SiC and GaN by a Ag flake paste[J]. Scripta Materialia, 2021, 198: 113833. [80] LI W L, LI Y T, WANG Y J, et al. Pressureless sinter-joining of micron-Ag flake pastes at 160 ℃ enabled by solvent and interface engineering[J]. Journal of Materials Processing Technology, 2023, 322: 118207. [81] CHEN C T, ZHAO S J, SEKIGUCHI T, et al. Large-scale bare Cu bonding by 10 μm-sized Cu–Ag composite paste in low temperature low pressure air conditions[J]. Journal of Science: Advanced Materials and Devices, 2023, 8(3): 100606. [82] CHEN C T, KIM D, LIU Y, et al. Development of micron-sized Cu–Ag composite paste for oxidation-free bare Cu bonding in air condition and its deterioration mechanism during aging and power cycling tests[J]. Journal of Materials Research and Technology, 2023, 24: 8967-8983. [83] ZHANG B W, CHEN C T, SEKIGUCHI T, et al. Development of anti-oxidation Ag salt paste for large-area (35 × 35 mm2) Cu-Cu bonding with ultra-high bonding strength[J]. Journal of Materials Science & Technology, 2022, 113: 261-270. [84] CHEN C T, KIM D, ZHANG Z, et al. Interface-mechanical and thermal characteristics of Ag sinter joining on bare DBA substrate during aging, thermal shock and 1200 W/cm2 power cycling tests[J]. IEEE Transactions on Power Electronics, 37(6): 6647-6659. [85] MU W, JANABI A, HU B R, et al. Liquid metal fluidic connection and floating die structure for ultralow thermomechanical stress of SiC power electronics packaging[J]. IEEE Transactions on Power Electronics, 39(7): 7808-7814. [86] 杨雯. 高温干燥环境中烧结纳米银的电化学迁移可靠性研究[D]. 天津: 天津大学, 2014. [87] LI D, MEI Y H, XIN Y C, et al. Reducing migration of sintered Ag for power devices operating at high temperature[J]. IEEE Transactions on Power Electronics, 35(12): 12646-12650. [88] KIM K S, JUNG K H, PARK B G, et al. Characterization of Ag-Pd nanocomposite paste for electrochemical migration resistance[J]. Journal of Nanoscience and Nanotechnology, 2013, 13(11): 7620-7624. [89] 贾强, 王文淦, 阿占文, 等. Ag-Pd纳米合金低温连接及其抗电化学迁移性能[J]. 中国激光, 2021, 48(8): 0802014. [90] 张博雯, 王微, 冯浩男, 等. Ag-In复合焊膏的高温抗电化学迁移行为[J]. 焊接学报, 2023, 44(12): 63-69. [91] LI Z A, ZHAO W W, SHI R Z, et al. Electrochemical migration mechanism of Cu@Ag composite preforms by electromagnetic compaction for power electronics[C]//2023 24th International Conference on Electronic Packaging Technology (ICEPT), Shihezi City, China, 2023. [92] LIU L, WANG Q, ZHANG C H, et al. Forming mechanism of Cu@Ag composite preforms by electromagnetic compaction for power electronics[C]//2024 25th International Conference on Electronic Packaging Technology (ICEPT), Tianjin, China, 2024. [93] TIAN Y H, JIANG Z, WANG C X, et al. Sintering mechanism of the Cu-Ag core-shell nanoparticle paste at low temperature in ambient air[J]. RSC Advances, 2016, 6(94): 91783-91790. [94] WU Z H, LIU W, FENG J Y, et al. Novel Cu@Ag micro/nanoparticle hybrid paste and its rapid sintering technique via electromagnetic induction for high-power electronics[J]. ACS Omega, 2023, 8(34): 31021-31029. [95] Infineon. How Infineon controls and assures the reliability of SiC based power semiconductors[EB/OL]. (2020-07) [2024-10-28]. https://www.infineon.com/dgdl/Infineon-Reliability_of_SiC_power_semiconductors-Whitepaper-v01_02-EN.pdf?fileId=5546d46272e49d2a01735723745d3f14&da=t. [96] European Center for Power Electronics. ECPE guideline AQG 324: Qualification of power modules for use in power electronics converter units (PCUs) in motor vehicles[EB/OL]. (2019-05-15)[2024-10-28]. https://wds-service-1258344699.file.myqcloud.com/20/9527/pdf/1628091899939c796936d770f65d3.pdf. [97] Intelligent Reliability 4.0. Work plan[EB/OL]. [2024-10-28]. https://www.irel40.eu/work-plan. [98] KIM H, HWANG J Y, KIM S E, et al. Thermomechanical challenges of 2.5-D packaging: A review of warpage and interconnect reliability[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 13(10): 1624-1641. [99] CHOU P H, CHIANG K N, LIANG S Y. Reliability assessment of wafer level package using artificial neural network regression model[J]. Journal of Mechanics, 2019, 35(6): 829-837. [100] HSIAO H Y, CHIANG K N. AI-assisted reliability life prediction model for wafer-level packaging using the random forest method[J]. Journal of Mechanics, 2020, 37: 28-36. [101] YUAN C, DE JONG S D M, VAN DRIEL W D. AI-assisted design for reliability: review and perspectives[C]//2024 25th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Catania, Italy, 2024. [102] VAN DRIEL W D, PRESSEL K, SOYTURK M. Recent advances in microelectronics reliability: Contributions from the European ECSEL JU project iRel40[M]. Cham: Springer International Publishing, 2024. |
[1] | 王一平,于铭涵,王润泽,佟子睿,冯佳运,田艳红. 功率器件封装纳米浆料材料与低温烧结工艺及机理研究进展*[J]. 电子与封装, 2025, 25(3): 30106-. |
[2] | 兰梦伟,姬峰,王成伟,孙浩洋,杜建宇,徐晋宏,王晶,张鹏哲,王明伟. 大功率器件基板散热技术研究进展*[J]. 电子与封装, 2025, 25(3): 30111-. |
[3] | 王秀琦,李一凡,罗子康,陆大世,计红军. 功率器件封装用纳米铜焊膏及其烧结技术研究进展*[J]. 电子与封装, 2025, 25(3): 30101-. |
[4] | 孙浩洋, 姬峰, 张晓宇, 兰梦伟, 李鑫宇, 冯青华, 兰元飞, 王明伟. 面向大功率器件散热的金刚石基板微流道仿真研究*[J]. 电子与封装, 2024, 24(11): 110204-. |
[5] | 李乐乐;肖海波;张超;王贤元;潘昭海;刘启军. 探卡对功率器件导通压降测试的影响[J]. 电子与封装, 2023, 23(6): 60202-. |
[6] | 袁海龙;袁毅凯;詹洪桂;成年斌;汤勇. 焊接空洞对功率器件可靠性的影响与调控*[J]. 电子与封装, 2023, 23(6): 60203-. |
[7] | 杜建宇, 唐睿, 张晓宇, 杨宇驰, 张铁宾, 吕佩珏, 郑德印, 杨宇东, 张驰, 姬峰, 余怀强, 张锦文, 王玮. 基于金刚石的先进热管理技术研究进展*[J]. 电子与封装, 2023, 23(3): 30107-. |
[8] | 刘超铭;王雅宁;魏轶聃;王天琦;齐春华;张延清;马国亮;刘国柱;魏敬和;霍明学. SiC功率器件辐照效应研究进展[J]. 电子与封装, 2022, 22(6): 60101-. |
[9] | 曹建武, 罗宁胜, Pierre Delatte, Etienne Vanzieleghem, Rupert Burbidge. 碳化硅器件挑战现有封装技术[J]. 电子与封装, 2022, 22(2): 20102-. |
[10] | 王殿年;李泽亮;郭本东;段嘉伟. 第三代半导体器件用高可靠性环氧塑封料的制备[J]. 电子与封装, 2022, 22(11): 110202-. |
[11] | 李菁萱;谢晓辰;王胜杰;林鹏荣;王勇. 陶瓷柱栅阵列封装电路器件级热学环境可靠性评估[J]. 电子与封装, 2021, 21(5): 50201-. |
[12] | 杨帆, 杭春进, 田艳红. 功率器件封装用纳米浆料制备及其烧结性能研究进展*[J]. 电子与封装, 2021, 21(3): 30201-. |
[13] | 张筱迪,毛明晖,卢昶衡,王文武,贾冯睿,龙旭. 基于有限元分析和机器学习的跌落所致封装结构力学行为预测[J]. 电子与封装, 2021, 21(2): 20204-. |
[14] | 王美玉, 胡伟波, 孙晓冬, 汪青, 于洪宇. 功率电子封装关键材料和结构设计的研究进展*[J]. 电子与封装, 2021, 21(10): 100109-. |
[15] | 党宁,潘效飞,龚平. 智能功率模块中绝缘铝基板可靠性提升设计研究[J]. 电子与封装, 2021, 21(1): 10401-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
访问总数: 当日访问总数: 当前在线:
版权所有 © 2019-2024 中国电子科技集团公司第五十八研究所 苏ICP备11028747号
地址:江苏省无锡市滨湖区惠河路5号 邮编:214035 电话:0510-85860386(林编辑);0510-85868956(俞编辑,史编辑) 电子邮箱:ep.cetc58@163.com
本系统由北京玛格泰克科技发展有限公司设计开发