[1] MOZAFFARIAHRAR E, THEOLEYRE F, MENTH M. A survey of Wi-Fi 6: technologies, advances, and challenges[J]. Future Internet, 2022, 14(10): 293. [2] KIM D, MORENO G, BI F, et al. Wideband 6 GHz RF filters for Wi-Fi 6E using a unique BAW process and highly Sc-doped AlN thin film[C]// 2021 IEEE MTT-S International Microwave Symposium (IMS), Atlanta, GA, USA, 2021: 207-209. [2] KIM D, MORENO G, BI F, et al. Wideband 6 GHz RF filters for Wi-Fi 6E using a unique BAW process and highly Sc-doped AlN thin film[C]// 2021 IEEE MTT-S International Microwave Symposium (IMS), Atlanta, GA, USA, 2021: 207-209. [3] ZHENG Q Y, LI C H, RAI A, et al. Thermal conductivity of GaN, GaN71, and SiC from 150 K to 850 K[J]. Physical Review Materials, 2019, 3: 014601. [4] WRIGHT A F. Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN[J]. Journal of Applied Physics, 1997, 82(6): 2833-2839. [5] MAHMOUD A, MUKHERJEE T, PIAZZA G. A study of quality factor in SAW resonators for SAW gyroscope applications[C]// 2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF), Keystone, CO, USA, 2020: 1-3. [6] JYOMURA S, NAGATSUMA K, TAKEUCHI H. SAW propagation loss mechanism in piezoelectric ceramics[J]. Journal of Applied Physics, 1981, 52(7): 4472-4478. [7] YU G F, LIANG R R, ZHAO H M, et al. Geometry characteristics and wide temperature behavior of silicon-based GaN surface acoustic wave resonators with ultrahigh quality factor[J]. Science China Information Sciences, 2023, 67(2): 122402. [8] KOSKELA J, KNUUTTILA J V, MAKKONEN T, et al. Acoustic loss mechanisms in leaky SAW resonators on lithium tantalate[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2001, 48(6): 1517-1526. [9] LI L, HE W, TONG Z, et al. Q-factor enhancement of coupling Bragg and local resonance band gaps in single-phase phononic crystals for TPOS MEMS resonator[J]. Micromachines (Basel), 2022, 13(8): 1217. [10] SUTTER-WIDMER D, DELOUDI S, STEURER W. Prediction of Bragg-scattering-induced band gaps in phononic quasicrystals[J]. Physical Review B, 2007, 75(9): 094304. [11] LU Z T, FU S L, CHEN Z L, et al. High-frequency and high-temperature stable surface acoustic wave devices on ZnO/SiO2/SiC structure[J]. Journal of Physics D: Applied Physics, 2020, 53(30): 305102. [12] SU R X, FU S L, SHEN J Y, et al. Enhanced performance of ZnO/SiO2/Al2O3 surface acoustic wave devices with embedded electrodes[J]. ACS Applied Materials & Interfaces, 2020, 12(37): 42378-42385. [13] LIU K F, WANG Y X, WU T. Design and analysis of phononic crystal reflector for surface acoustic wave resonator[C]// 2021 IEEE International Ultrasonics Symposium (IUS), Xi’an, China, 2021: 1-4. |