[1] FU H Q, FU K, CHOWDHURY S, et al. Vertical GaN power devices: device principles and fabrication technologies: part I[J]. IEEE Transactions on Electron Devices, 2021, 68(7): 3200-3211. [2] GUO X L, ZHONG Y Z, HE J L, et al. High-voltage and high-ION/IOFF quasi-vertical GaN-on-Si Schottky barrier diode with argon-implanted termination[J]. IEEE Electron Device Letters, 42(4): 473-476. [3] LIU X K, LIN F, LI J, et al. 1.7 kV vertical GaN-on-GaN Schottky barrier diodes with helium-implanted edge termination[J]. IEEE Transactions on Electron Devices, 2022, 69(4): 1938-1944. [4] MENEGHINI M, DE SANTI C, ABID I, et al. GaN-based power devices: physics, reliability, and perspectives[J]. Journal of Applied Physics, 2021, 130(18): 181101. [5] LEI Y, SHI H B, LU H, et al. Field plate engineering for GaN-based Schottky barrier diodes[J]. Journal of Semiconductors, 2013, 34(5): 054007. [6] WU J Y, LIAO Z L, WANG H F, et al. Ultra-low turn-on voltage (0.37 V) vertical GaN-on-GaN Schottky barrier diode via oxygen plasma treatment[J]. Applied Physics Letters, 2023, 123(21): 213505. [7] SUN Y, KANG X W, ZHENG Y K, et al. Review of the recent progress on GaN-based vertical power Schottky barrier diodes (SBDs)[J]. Electronics, 2019, 8(5): 575. [8] 王赫余. 沟槽多晶硅/4H-SiC异质结势垒控制器件设计与仿真研究[D]. 哈尔滨: 哈尔滨工程大学, 2017. [9] YU H Y, LIANG S W, LIU H Z, et al. Numerical study of SiC MOSFET with integrated n-/ n-type poly-Si/SiC heterojunction freewheeling diode[J]. IEEE Transactions on Electron Devices, 2021, 68(9): 4571-4576. [10] HENNING J P, SCHOEN K J, MELLOCH M R, et al. Electrical characteristics of rectifying polycrystalline silicon/silicon carbide heterojunctions[J]. Journal of Electronic Materials, 1998, 27(4): 296-299. [11] HAYASHI T, TANAKA H, SHIMOIDA Y, et al. New high-voltage unipolar mode p+ Si/n– 4H-SiC heterojunction diode[J]. Materials Science Forum, 2005, 483/484/485: 953-956. [12] NI W, EMORI K, MARUI T, et al. SiC trench MOSFET with an integrated low von unipolar heterojunction diode[J]. Materials Science Forum, 2014, 778/779/780: 923-926. [13] YAMAGAMI S, HAYASHI T, HOSHI M. Novel low VON poly-Si/4H-SiC heterojunction diode using energy barrier height control[J]. Materials Science Forum, 2012, 717/718/719/720: 1005-1008. [14] EMORI K, MARUI T, SAITO Y, et al. Novel poly-Si/GaN vertical heterojunction diode[J]. Materials Science Forum, 2015, 821/822/823: 1015-1018. [15] FU H, FAN X R, WU Z L, et al. Demonstration of 1.2-kV rated novel power poly-Si/4H-SiC heterojunction diode with record low forward voltage drop[J]. IEEE Transactions on Electron Devices, 2024, 71(12): 8031-8036. [16] FU H, WEI J X, WEI Z X, et al. Theory and design of novel power poly-Si/SiC heterojunction tunneling transistor structure[J]. IEEE Transactions on Electron Devices, 2023, 70(11): 6086-6092. [17] LONG H, AI L, LI S Z, et al. Photosensitive and temperature-dependent I–V characteristics of p-NiO film/n-ZnO nanorod array heterojunction diode[J]. Materials Science and Engineering: B, 2014, 184: 44-48. [18] ZHANG T, LI L A, AO J P. Temperature-dependent electrical transport characteristics of a NiO/GaN heterojunction diode[J]. Surfaces and Interfaces, 2016, 5: 15-18. [19] MATSUURA H, OKUSHI H, TANAKA K, et al. Electrical properties of n-amorphous/p-crystalline silicon heterojunctions[J]. Journal of Applied Physics, 1984, 55(4): 1012-1019. [20] ZHANG Y Y, QIAN L X, LIU X Z. Determination of the band alignment of a-IGZO/a-IGMO heterojunction for high-electron mobility transistor application[J]. Physica Status Solidi (RRL) – Rapid Research Letters, 2017, 11(10): 1700251. [21] FANG Z Q, LOOK D C, JASINSKI J, et al. Evolution of deep centers in GaN grown by hydride vapor phase epitaxy[J]. Applied Physics Letters, 2001, 78(3): 332-334. [22] SARKER B K, KHONDAKER S I. Thermionic emission and tunneling at carbon nanotube-organic semiconductor interface[J]. ACS Nano, 2012, 6(6): 4993-4999. [23] ROSE A. Space-charge-limited currents in solids[J]. Physical Review, 1955, 97(6): 1538-1544. [24] 陈春兰. NiO/SiC异质结的制备及其界面、光电特性研究[D]. 西安: 西安理工大学, 2021.
|