[1] ZHANG S, XU X, LIN T, et al. Recent advances in nano-materials for packaging of electronic devices[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(15): 13855-13868. [2] ZHANG S, YANG M, WU Y, et al. A study on the optimization of anisotropic conductive films for Sn-3Ag-0.5Cu-based flex-on-board application at a 250 ℃ bonding temperature[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8(3): 383-391. [3] LI S, WANG X, LIU Z, et al. Corrosion behavior of Sn-based lead-free solder alloys: a review[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(12): 9076-9090. [4] SUN L, ZHANG L. Properties and microstructures of Sn-Ag-Cu-X lead-free solder joints in electronic packaging[J]. Advances in Materials Science and Engineering, 2015, 2015(2):1-16. [5] GAO L, XUE S, ZHANG L, et al. Effect of alloying elements on properties and microstructures of Sn-Ag-Cu solders[J]. Microelectronic Engineering, 2010, 87(11): 2025-2034. [6] ZHANG Q K, LONG W M, YU X Q, et al. Effects of Ga addition on microstructure and properties of Sn-Ag-Cu/Cu solder joints[J]. Journal of Alloys & Compounds, 2015, 622:973-978. [7] LUO D, XUE S, LI Z. Effects of Ga addition on microstructure and properties of Sn-0.5Ag-0.7Cu solder[J]. Journal of Materials Science: Materials in Electronics, 2014, 25(8): 3566-3571. [8] SABRI M F M, SHNAWAH D A, BADRUDDIN I A,et al. Microstructural stability of Sn-1Ag-0.5Cu-xAl (x= 1, 1.5, and 2 wt.%) solder alloys and the effects of high-temperature aging on their mechanical properties[J]. Materials Characterization, 2013, 78: 129-143. [9] GAIN A K, ZHANG L. Effects of Ni nanoparticles addition on the microstructure, electrical and mechanical properties of Sn-Ag-Cu alloy[J]. Materialia, 2019, 5: 100234. [10] CHE F X, ZHU W H, POH E S W, et al. The study of mechanical properties of Sn–Ag–Cu lead-free solders with different Ag contents and Ni doping under different strain rates and temperatures[J]. Journal of Alloys and Compounds, 2010, 507(1): 215-224. [11] LIU X, HUANG M, ZHAO N, et al. Liquid-state and solid-state interfacial reactions between Sn-Ag-Cu-Fe composite solders and Cu substrate[J]. Journal of Materials Science: Materials in Electronics, 2014, 25(1): 328-337. [12] SHNAWAH D A, SABRI M F M, BADRUDDIN I A, et al. Effect of Ag content and the minor alloying element Fe on the mechanical properties and microstructural stability of Sn-Ag-Cu solder alloy under high-temperature annealing[J]. Journal of electronic materials, 2013, 42(3): 470-484. [13] KANTARCIOGLU A, KALAY Y E. Effects of Al and Fe additions on microstructure and mechanical properties of SnAgCu eutectic lead-free solders[J]. Materials Science and Engineering: A, 2014, 593: 79-84. [14] MA Z L, SHANG H, DASZKI A A, et al. Mechanisms of beta-Sn nucleation and microstructure evolution in Sn-Ag-Cu solders containing titanium[J]. Journal of Alloys and Compounds, 2019, 777: 1357-1366. [15] CHEN W M, KANF S K, KAO C R. Effects of Ti addition to Sn–Ag and Sn–Cu solders[J]. Journal of alloys and compounds, 2012, 520: 244-249. [16] EL-DALY A A, HAMMAD A E, FAWZY A, et al. Microstructure, mechanical properties, and deformation behavior of Sn–1.0Ag–0.5Cu solder after Ni and Sb additions[J]. Materials & design, 2013, 43(1): 40-49. [17] CHEN B L, LI G Y. Influence of Sb on IMC growth in Sn–Ag–Cu–Sb Pb-free solder joints in reflow process[J]. Thin Solid Films, 2004, 462(9): 395-401. [18] MA Z L, BELYAKOV S A, GOURLAY C M. Effects of cobalt on the nucleation and grain refinement of Sn-3Ag-0.5Cu solders[J]. Journal of Alloys and Compounds, 2016, 682: 326-337. [19] HASEEB A, LENG T S. Effects of Co nanoparticle addition to Sn–3.8Ag–0.7Cu solder on interfacial structure after reflow and ageing[J]. Intermetallics, 2011, 19(5): 707-712. [20] MA L, TAI F, XU G, et al. Effects of processing and amount of co addition on shear strength and microstructural development in the Sn-3.0Ag-0.5Cu solder joint[J]. Journal of electronic materials, 2011, 40(6): 1416-1421. [21] SAYYADI R, NAFFAKH-MOOSAVY H. Physical and mechanical properties of synthesized low Ag/lead-free Sn-Ag-Cu-xBi (x=0, 1, 2.5, 5 wt%) solders[J]. Materials Science and Engineering: A, 2018, 735: 367-377. [22] ZHAO J, QI L, WANG X, et al. Influence of Bi on microstructures evolution and mechanical properties in Sn-Ag-Cu lead-free solder[J]. Journal of Alloys and Compounds, 2004, 375(1-2): 196-201. [23] 王若达. 电子封装用Sn-Ag-Cu系低银含硼无铅钎料的研究[D]. 北京:北京有色金属研究总院, 2019. [24] CHOI H, LEE T K, KIM Y, et al. Improved strength of boron-doped Sn-1.0Ag-0.5Cu solder joints under aging conditions[J]. Intermetallics, 2012, 20(1): 155-159. [25] 张亮,韩继光,何成文,等. 稀土元素对无铅钎料组织和性能的影响[J]. 中国有色金属学报, 2012. 22(6):1680-1695. [26] ZHANG L, XUE S B, ZENG G, et al. Interface reaction between Sn-Ag-Cu/Sn-Ag-CuCe solders and Cu substrate subjected to thermal cycling and isothermal aging[J]. Journal of Alloys and Compounds, 2012, 510(1): 38-45. [27] CHEN H M, LIAO J, WU S, et al. Effects of Dy substitution for Sn on the solderability and mechanical property of the standard near eutectic Sn-Ag-Cu alloy[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(15): 12662-12668. [28] YU D Q, ZHAO J, WANG L. Improvement on the microstructure stability, mechanical and wetting properties of Sn-Ag-Cu lead-free solder with the addition of rare earth elements[J]. Journal of alloys and compounds, 2004, 376(1-2): 170-175. [29] GAO L, XUE S, ZHANG L, et al. Effects of trace rare earth Nd addition on microstructure and properties of Sn-Ag-Cu solder[J]. Journal of Materials Science: Materials in Electronics, 2010, 21(7): 643-648. [30] ZHANG L, FAN X, GUO Y, et al. Properties enhancement of Sn-Ag-Cu solders containing rare earth Yb[J]. Materials & Design, 2014, 57: 646-651. [31] ZHANG L, HAN J, GUO Y, et al. Effect of rare earth Ce on the fatigue life of Sn-Ag-Cu solder joints in WLCSP device using FEM and experiments[J]. Materials Science and Engineering: A, 2014, 597: 219-224. [32] XIAO W M, SHI Y W, XU G C, et al. Effect of rare earth on mechanical creep-fatigue property of Sn-Ag-Cu solder joint[J]. Journal of Alloys and Compounds, 2009, 472(1-2): 198-202. [33] 孙忍. 纳米SnO2颗粒增强Sn-Ag-Cu低银钎料的研究[D].徐州:中国矿业大学, 2017. [34] 曹天泽. ZnO纳米颗粒增强Sn-Ag-Cu无铅钎料的可靠性研究[D].北京:北方工业大学,2019. [35] PAL M K, GERGELY G, KONCZ-HORVATH D, et al. Investigation of microstructure and wetting behavior of Sn-3.0Ag-0.5Cu (SAC305) lead-free solder with additions of 1.0 wt% SiC on copper substrate[J]. Intermetallics, 2021, 128: 106991. [36] GAIN A K, FOUZDER T, CHAN Y C, et al. Microstructure, kinetic analysis and hardness of Sn-Ag-Cu-1 wt% nano-ZrO2 composite solder on OSP-Cu pads[J]. Journal of Alloys and Compounds, 2011, 509(7): 3319-3325. [37] ZHAO Z, LIU L, CHOI H S, et al. Effect of nano-Al2O3 reinforcement on the microstructure and reliability of Sn-3.0Ag-0.5Cu solder joints[J]. Microelectronics Reliability, 2016, 60: 126-134. [38] GAIN A K, ZHANG L. The effects of TiO2 nanoparticles addition on the thermal shock resistance, shear strength and IMC layer growth of SAC305 alloy[J]. Materialia, 2018, 3: 64-73. [39] 汪源. 纳米Ag3Sn, Cu6Sn5颗粒对Sn基无铅焊料性能影响研究[D]. 北京:北京理工大学, 2015. [40] LIU X D, HAN Y D, JING H Y, et al. Effect of graphene nanosheets reinforcement on the performance of Sn-Ag- Cu lead-free solder[J]. Materials Science and Engineering: A, 2013, 562: 25-32. [41] ZHU Z, CHAN Y C, CHEN Z, et al. Effect of the size of carbon nanotubes (CNTs) on the microstructure and mechanical strength of CNTs-doped composite Sn0.3Ag0.7Cu-CNTs solder[J]. Materials Science and Engineering: A, 2018, 727: 160-169. [42] WANG H, ZHANG K, ZHANG M. Fabrication and properties of Ni-modified graphene nanosheets reinforced Sn-Ag-Cu composite solder[J]. Journal of Alloys and Compounds, 2019, 781: 761-772. [43] WANG H, HU X, JIANG X. Effects of Ni modified MWCNTs on the microstructural evolution and shear strength of Sn-3.0Ag-0.5Cu composite solder joints[J]. Materials Characterization, 2020, 163: 110287. [44] HAN Y D, GAO Y, ZHANG S T, et al. Study of mechanical properties of Ag nanoparticle-modified graphene/Sn-Ag-Cu solders by nanoindentation[J]. Materials Science and Engineering: A, 2019, 761: 138051. [45] HAN Y D, GAO Y, JING H Y, et al. A modified constitutive model of Ag nanoparticle-modified graphene/Sn-Ag-Cu/Cu solder joints[J]. Materials Science and Engineering: A, 2020, 777: 139080. [46] GENANU M, HADIAN F, OWEN R, et al. The effect of thermal history on the microstructure of Sn-Ag-Cu/SnBiAg mixed assemblies[J]. Journal of Electronic Materials, 2021, 50(1): 209-216. [47] CHEN O H, GAO J, PAN T C C, et al. Solder joint reliability on mixed SAC-BiSn ball grid array solder joints formed with resin reinforced Bi-Sn metallurgy solder pastes[C]// Proceedings of the 2016 SMTA International Conference, 2016: 216-228. [48] LIU Y, XU R, ZHANG H, et al. Microstructure and shear behavior of solder joint with Sn58Bi/Sn3.0Ag0. 5Cu/Cu superposition structure[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(15): 14077-14084. [49] LIU Y, LIU L, XU R, et al. Microstructure, hardness, and shear behavior of Sn3.0Ag0.5Cu-Sn58Bi composite solder joint[J]. Materials Research Express, 2019, 6(11): 116328. [50] SHEN Y A, ZHOU S, Li J, et al. Sn-3.0Ag-0.5Cu/Sn-58Bi composite solder joint assembled using a low-temperature reflow process for PoP technology[J]. Materials & Design, 2019, 183: 108144.
|