[1] BINDER D, SMITH E C, HOLMAN A B. Satellite anomalies from galactic cosmic rays[J]. IEEE Transactions on Nuclear Science, 1975, 22(6):2675-2679. [2] 殷亚楠,王玧真,邱一武,等. 纳米器件单粒子瞬态仿真研究[J]. 电子与封装, 2022, 22(7): 070404. [3] 姚进,周晓彬,左玲玲,等.基于0.18μm CMOS加固工艺的抗辐射设计[J]. 电子与封装, 2022, 22(1): 010401. [4] 马艺珂,姚进,殷亚楠,等.一种抗辐射LVDS驱动电路IP设计[J]. 电子与封装, 2022, 22(2): 020306. [5] DODD P E, SHANEYFELT M R, SCHWANK J R, et al. Current and future challenges in radiation effects on CMOS electronics[J]. IEEE Transactions on Nuclear Science, 2010, 57(4): 1747-1763. [6] GINET G P, O’BRIEN T P, HUSTON S L,et al. AE9, AP9 and SPM: New models for specifying the trapped energetic and apace plasma environment[J]. Space Science Reviews, 2013, 179(1-4): 579-615. [7] BENEDETTO J M, ETON P H, MAVIS D G. Digital single event transient trends with technology node scaling[J]. IEEE Transactions on Nuclear Science, 2006, 53: 3462-3465. [8] BENEDETTO J M, ETON PH, AVERY K. Heavy ion-induced digital single-event transients in deep submicron processes[J]. IEEE Transactions on Nuclear Science, 2004, 51(6): 3480-3485. [9] HUBERT G,BOURDARIE S,ARTOLA L, et al. Impact of the solar flares on the SER dynamics on micro and nanometric technologies[J]. IEEE Transactions on Nuclear Science, 2010, 57(6): 3127-3134. [10] 何安林,郭刚,沈东军,等. 65nm工艺SRAM低能质子单粒子翻转错误率预估[J]. 原子能科学技术, 2019,53(2): 366-372. [11] HEIDELD F, MARSHALL P W, LABEL K A, et al. Low energy proton single event upset test results on 65nm SOI SRAM[J]. IEEE Transactions on Nuclear Science, 2008, 55(6): 3394-3340. [12] RODBELLKP, HEIDELD F, TANG H H K, et al. Low energy proton induced single event upsets in 65nm node, silicon-on-insulator, latches and memory cells[J]. IEEE Transactions on Nuclear Science, 2007, 54(6): 2474-2479. [13] CANNON E H, CABANAS-HOLMEN M, WERTJ, et al. Heavy ion, high energy and low energy proton SEE sensitivity of 90nm RHBD SRAMs[J]. IEEE Transactions on Nuclear Science, 2010, 57(6): 3493-3499.
|