[1] JAMES A P. Towards Strong AI with Analog Neural Chips[C]// 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, 2020: 1-5. [2] 汪鑫. 人工智能芯片的概念和应用分析[J]. 中国新通信, 2020, 22(20): 112-113. [3] 尹首一. 人工智能芯片概述[J]. 微纳电子与智能制造, 2019, 1(2): 7-11. [4] 张园园. 基于SiP技术AI芯片封装关键技术研究与实现[D]. 南京:南京邮电大学, 2022. [5] 沈丛: 先进封装:把芯片“封”得更小[N]. 中国电子报, 2021-07-13(1). [6] 商惠敏. 人工智能芯片产业技术发展研究[J]. 全球科技经济瞭望, 2021, 36(12): 24-30. [7] 李丽婷. 人工智能芯片技术进展及产业发展研究报告[J]. 厦门科技, 2019(1): 1-9. [8] 张蔚敏, 蒋阿芳, 纪学毅. 人工智能芯片产业现状[J]. 电信网技术, 2018(2): 67-71. [9] 赵崇文. 人工神经网络综述[J]. 山西电子技术, 2020(3): 94-96. [10] 徐晨. 美国人工智能芯片最新发展[J]. 电子元器件与信息技术, 2022, 6(7): 19-22. [11] ASE. 扇出型封装[EB/OL]. [2023-04-23]. https://ase.aseglobal.com/ch/fan-out-packaging/. [12] 博锐电路. 扇出型封装技术详解[EB/OL]. (2022-10-22) [2023-04-23]. https://www.brpcb.com/ic-substrate/301.html. [13] ERS Electronic. 扇出封装的工艺基础[EB/OL]. (2023-03-10) [2023-04-23]. https://zhuanlan.zhihu.com/p/ 612964957. [14] LIN J C, HUNG J P, LIU N W, et al. Package semiconductor device and method of packaging the semiconductor device: US20130168848[P]. 2013-07-04. [15] HSU C H, LIN Y J, KUO S L, et al. Thermal characteristics of integrated fan-out on substrate (InFO_oS) packaging technology[C]// 2020 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, 2020: 212-218. [16] ASE. 扇出型基板上晶片封装[EB/OL]. [2023-04-23]. https://ase.aseglobal.com/ch/focos/. [17] 申九林, 马书英, 郑凤霞, 等. 基于硅基扇出(eSiFO?)技术的先进指纹传感器晶圆级封装工艺开发[J]. 电子与封装, 2023, 23(3): 030111. [18] YUAN S C, CAI A W, YU H P, et al. Simulation research on wafer warpage and internal stress in the first passivation process of eSiFO package[C]// 2018 19th International Conference on Electronic Packaging Technology (ICEPT), Shanghai, 2018: 990-994. [19] KESER B, KROEHNERT S. Advances in embedded and fan-out wafer level packaging technologies[M]. Hoboken: Wiley-IEEE Press, 2019: 183. [20] KEN H. Ultra-small fan-out packaging solution[EB/OL]. (2021-08-19) [2023-04-23]. https://semiengineeri ng.com/ultra-small-fan-out-packaging-solution/. [21] 曹炜, 罗多纳, 尹海丰, 等. 未来的chiplet技术:封装、互连与电源供给[J]. 微纳电子与智能制造, 2022, 4(04): 25-33. [22] 单祥茹. 有了EMIB, Stratix 10 FPGA还有什么不可能[J]. 中国电子商情·基础电子, 2015(12): 16. [23] MAHAJAN R, QIAN Z G, VISWANATH R S, et al. Embedded multidie interconnect bridge—a localized, high-density multichip packaging interconnect[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9(10): 1952-1962. [24] MAHAJAN R, SANKMAN R, PATEL N, et al. Embedded multi-die interconnect bridge (EMIB): a high density, high bandwidth packaging interconnect[C]// 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), Vegas, 2016: 557-565. [25] 马盛林. 后摩尔时代,先进封装将迎来高光时刻[N]. 中国电子报, 2021-09-07(8). [26] TSMC. CoWoS[EB/OL]. [2023-04-23]. https://3dfabric.tsmc.com/schinese/dedicatedFoundry/technology/co wos.htm. [27] SAMSUNG. 三星电子宣布推出面向高性能应用的下一代2.5D集成解决方案“I-Cube4”[EB/OL]. (2021-05-21) [2023-04-23]. https://semiconductor.samsung.com/cn/news-events/news/samsung-electronics-announces-av ailability-of-its-next-generation-2-5d-integration-solution-i-cube4-for-high-performance-application/. [28] 马力, 项敏, 石磊, 等. 高端性能封装技术的某些特点与挑战[J]. 电子与封装, 2023, 23(3): 030109. [29] 贾国庆, 林倩, 陈善继. 3D IC-TSV技术与可靠性研究[J]. 电子技术应用, 2015, 41(8): 3-8. [30] TSMC. TSMC-SoIC[EB/OL]. [2023-04-23]. https://3dfabric.tsmc.com/english/dedicatedFoundry/technology /SoIC.htm. [31] 澎湃. 英特尔揭开Ponte Vecchio GPU的神秘面纱[EB/OL]. (2022-08-26) [2023-04-23]. https://m.thepaper.cn/baijiahao_19616032. [32] MIN M, KADIVAR S. Accelerating innovations in the new era of HPC, 5G and networking with advanced 3D packaging technologies[C]// 2020 International Wafer Level Packaging Conference (IWLPC), Jose, 2020: 1-6. [33] 陈桂林, 王观武, 胡健, 等. Chiplet封装结构与通信结构综述[J]. 计算机研究与发展, 2022, 59(1): 22-30. [34] 曹立强, 侯峰泽, 王启东, 等. 先进封装技术的发展与机遇[J]. 前瞻科技, 2022, 1(3): 101-114. [35] 孙国立, 秦飞, 代岩伟, 等. 基于层级多尺度方法的TSV晶圆翘曲预测模型研究[J]. 微电子学与计算机, 2023, 40(1): 130-137. [36] TUMMALA R, SWAMINATHAN M, NIMBALKAR P. A new and historic packaging era[J]. Chip Scale Review, 2022, 26(2): 6-10. [37] 田苗, 栾振兴, 陈舒静, 等. 基于通孔双面分步填充的TSV制备方法[J]. 半导体技术, 2022, 47(8): 636-641. [38] LEE K. High-density fan-out technology for advanced SiP and 3D heterogeneous integration[C]// 2018 IEEE International Reliability Physics Symposium (IRPS), Burlingame, 2018: 4D.1. [39] HUNG J N, LI H C, LIN P F, et al. Advanced system integration for high performance computing with liquid cooling[C]// 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), Diego, 2021: 105-111. [40] LIN P Y, KUO S L, YAN K, et al. Advanced thermal integration for HPC packages with two-phase immersion cooling[C]// 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), Diego, 2022: 566-573. [41] ROY R, DAS S, LABBE B, et al. Co-design of thermal management with system architecture and power management for 3D ICs[C]// 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), Diego, 2022: 211-220. [42] LEE D W, MAYBERRY R, MACKIE A, et al. Optimizing reflowed solder TIM (sTIMs) processes for emerging heterogeneous integrated packages[C]// 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), Diego, 2022: 1228-1237. [43] 半导体行业观察. AI芯片的新风向[EB/OL]. (2020-7-13) [2023-04-23]. https://zhuanlan.zhihu.com/p/159291923. [44] 王若达. 先进封装推动半导体产业新发展[J]. 中国集成电路, 2022, 31(4): 26-29, 42. |