[1] HUTNER M, SETHURAM R, VINNAKOTA B, et al. Special session: test challenges in a chiplet marketplace[C]// 2020 IEEE 38th VLSI Test Symposium (VTS), San Diego, 2020: 1-12. [2] LAU J H. Chiplet heterogeneous integration[M]//Semiconductor Advanced Packaging. Singapore: Springer Singapore, 2021: 413-439. [3] ZHUANG Z, YU B, CHAO K Y, et al. Multi-package co-design for chiplet integration[C]// Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design, Munich, 2022: 1-9. [4] DAS SHARMA D, PASDAST G, QIAN Z G, et al. Universal chiplet interconnect express (UCIe): An open industry standard for innovations with chiplets at package level[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2022, 12(9): 1423-1431. [5] MUNOZ R. Furthering Moore’s law integration benefits in the chiplet era[J]. IEEE Design & Test, 2024, 41(1): 81-90. [6] 刘晓阳, 刘海燕, 于大全, 等. 硅通孔(TSV)转接板微组装技术研究进展[J]. 电子与封装, 2015, 15(8): 1-8. [7] LEE J H, YONG G H, JEONG M S, et al. S-Connect fan-out interposer for next gen heterogeneous integration[C]// 2021 IEEE 71st Electronic Components and Technology Conference, San Diego, 2021: 96–100. [8] JANG H, AHN K, PARK H, et al. Reliability performance of S-connect module (bridge technology) for heterogeneous integration packaging[C]// 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, 2023: 1027-1031. [9] CHONG, C T, GUAN L T., HO D, et al. Heterogeneous integration with embedded fine interconnect[C]// 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, 2021. [10] CHE F X, HO D, CHAI T C. Co-design for extreme large package solution with embedded fine pitch interposer (EFI) technology[C]// 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), San Diego, 2018. [11] 于大全. 硅通孔三维封装技术[M]. 北京: 电子工业出版社, 2021. [12] LIM S P S, CHONG S C, SEIT W W, et al. Challenges and Approaches of 2.5D high density Flip chip interconnect on through mold interposer[C]// 2018 IEEE 20th Electronics Packaging Technology Conference (EPTC), Singapore, 2018: 618-624. [13] LI T, HOU J, YAN J L, et al. Chiplet heterogeneous integration technology-status and challenges[J]. Electronics, 2020, 9(4): 670. [14] MOUNCE G, LYKE J, HORAN S, et al. Chiplet based approach for heterogeneous processing and packaging architectures[C]// 2016 IEEE Aerospace Conference, Big Sky, MT, USA, 2016: 1-12. [15] KIM J, MURALI G, PARK H, et al. Architecture, chip, and package codesign flow for interposer-based 2.5-D chiplet integration enabling heterogeneous IP reuse[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28(11): 2424-2437. [16] 马力, 项敏, 石磊, 等. 高端性能封装技术的某些特点与挑战[J]. 电子与封装, 2023, 23(3): 030109. [17] SIKKA K, BONAM R, LIU Y, et al. Direct bonded heterogeneous integration (DBHi) Si bridge[C]// 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, 2021: 136-147. [18] JAIN A, SIKKA K, GOMEZ J M, et al. Laser vs. blade dicing for direct bonded heterogeneous integration (DBHi) Si bridge[C]// 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, 2021: 1125-1130. [19] HORIBE A, WATANABE T, MARUSHIMA C, et al. Characterization of non-conductive paste materials (NCP) for thermocompression bonding in a direct bonded heterogeneously integrated (DBHi) Si-bridge package[C]// 2022 72nd Electronic Components and Technology Conference (ECTC), San Diego, 2022: 625-630. [20] LAU J H. Heterogeneous integrations [M]. Germany: Springer, 2019. [21] MAHAJAN R, SANKMAN R, PATEL N, et al. Embedded multi-die interconnect bridge (EMIB): A high density, high bandwidth packaging interconnect[C]// 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), Las Vegas, 2016: 557-565. [22] DUAN G, KANAOKA Y, MCREE R, et al. Die embedded challenges for EMIB advanced packaging technology[C]// 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, 2021. [23] MAHAJAN R, QIAN Z G, VISWANATH R S, et al. Embedded multidie interconnect bridge-a localized, high-density multichip packaging interconnect[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9(10): 1952-1962. [24] CASPER B K, HAYCOCK M, MOONEY R. An accurate and efficient analysis method for multi-Gb/s chip-to-chip signaling schemes[C]// 2002 Symposium on VLSI Circuits. Digest of Technical Papers, Honolulu, 2002. [25] KESER B, KROEHNERT S. Advances in embedded and fan-out wafer level packaging technologies[M]. Hoboken: Wiley-IEEE Press, 2019. [26] CHEN W T, LIN C C, TSAI C H, et al. Design and analysis of logic-HBM2E power delivery system on CoWoS platform with deep trench capacitor[C]// 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), Lake Buena Vista, 2020: 380-385. [27] HUANG P K, LU C Y, WEI W H, et al. Wafer level system integration of the fifth generation CoWoS?-S with high performance Si interposer at 2500 mm2[C]// 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, 2021: 101-104. [28] HOU S Y, LEE C H, WANG T D, et al. Supercarrier redistribution layers to realize ultra large 2.5D wafer scale packaging by CoWoS[C]// 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, 2023: 510-514. [29] YU D C H, YEH J, YEE K C, et al. Integrated fan-out (InFO) for high performance computing[M]. Hoboken: John Wiley & Sons, Ltd., 2022. [30] YU D C H, WANG C T, HSIA H. Foundry perspectives on 2.5D/3D integration and roadmap[C]// 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, 2021. [31] HU Y C, LIANG Y M, HU H P, et al. CoWoS architecture evolution for next generation HPC on 2.5D system in package[C]// 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, 2023. [32] MATSUMOTO K, BERGENDAHL M, SIKKA K, et al. Thermal analysis of DBHi (direct bonded heterogeneous integration) Si bridge[C]// 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, 2021. [33] Apple. Apple unveils M1 ultra, the world’s most powerful chip for a personal computer[EB/OL]. (2022-03-08) [2024-02-21]. https://www.apple.com/newsroom/2022/03/apple-unveils-m1-ultra-the-worlds-most-powerful-chip-for-a-personal-computer/ [34] LIN J, CHUNG C K, LIN C F, et al. Scalable chiplet package using fan-out embedded bridge[C]// 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), Lake Buena Vista, 2020. [35] YOU J W, LI J, HO D, et al. Electrical performances of fan-out embedded bridge[C]// 2021 IEEE 71st Electronic Components and Technology Conference, San Diego, 2021. [36] CAO L H, LEE T., CHANG Y S, et al. Advanced HDFO packaging solutions for chiplets integration in HPC application[C]// 2021 IEEE 71st Electronic Components and Technology Conference, San Diego, 2021. [37] LEE T C, YANG S H, WU H Y, et al. Chip last fanout chip on substrate (FOCoS) solution for chiplets integration[C]// 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, 2022. [38] YIN W J, LAI W H, LU Y X, et al. Mechanical and thermal characterization analysis of chip-last fan-out chip on substrate[C]// 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, 2022. [39] QIU Y, BEILLIARD Y, DE SOUSA I, et al. A self-aligned structure based on V-groove for accurate silicon bridge placement[C]// 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, 2022. [40] BHATTACHARYA S, RAO V S. Multi-chiplet heterogeneous integration packaging for semiconductor system scaling[C]// 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Japan, 2023. [41] LAU J H. State-of-the-art and outlooks of chiplets heterogeneous integration and hybrid bonding[J]. Journal of Microelectronics and Electronic Packaging, 2021, 18(4): 145-160. [42] LAU J H. Chiplet Design and Heterogeneous Integration Packaging[M]. Singapore: Springer Nature Singapore, 2023. [43] HORIBE A, MARUSHIMA C, WATANABE T, et al. Super fine jet underfill dispense technique for robust micro joint in direct bonded heterogeneous integration (DBHi) silicon bridge packages[C]// 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, 2022: 631-634. [44] MARUSHIMA C, AOKI T, NAKAMURA K, et al. Dimensional parameters controlling capillary underfill flow for void-free encapsulation of a direct bonded heterogeneous integration (DBHi) Si-bridge package[C]// 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego,2022: 586-590. [45] ZHAO J, CHEN Z H, QIN F, et al. Development of high performance 2.5D packaging using glass interposer with through glass vias[J]. Journal of Materials Science: Materials in Electronics, 2023, 34(25): 1790. [46] 方志丹, 于中尧, 武晓萌, 等. FCBGA基板关键技术综述及展望[J]. 电子与封装, 2023, 23(3): 030103. [47] LIU S L B, KAO N, SHIH T, et al. Fan-out embedded bridge solution in HPC application[C]// 2021 IEEE 23rd Electronics Packaging Technology Conference (EPTC), Singapore, 2021: 222-225. [48] LIN V, SHIH T, KANG A, et al. Fan-out embedded bridge with TSV(FO-EB-T) package characterization and evaluation[C]// 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando,2023: 1344-1347. [49] SU P Y J, HO D, PU J, et al. Chiplets integrated solution with FO-EB package in HPC and networking application[C]// 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, 2022: 2135-2140. [50] SHIMOE H, IIJIMA T, IIYAMA T, et al. Influences of fan-in/fan-out structure and underfill fillet on TCT reliability of flip chip BGA[C]// Reliability Physics Symposium Proceedings, 1998. 36th Annual. 1998 IEEE International, 1998: 254-259. [51] NG F C, ABAS M A. Underfill flow in flip-chip encapsulation process: a review[J]. Journal of Electronic Packaging, 2022, 144(1): 010803. |