电子与封装 ›› 2025, Vol. 25 ›› Issue (5): 050106 . doi: 10.16257/j.cnki.1681-1070.2025.0110
• “面向先进封装应用的铜互连键合技术”专题 • 上一篇 下一篇
陈桂,邵云皓,屈新萍
收稿日期:
2024-12-31
出版日期:
2025-06-04
发布日期:
2025-03-27
作者简介:
陈桂(1997—),女,贵州遵义人,博士研究生,主要研究方向为低温铜-铜键合及三维集成技术。
CHEN Gui, SHAO Yunhao, QU Xinping
Received:
2024-12-31
Online:
2025-06-04
Published:
2025-03-27
摘要: 随着集成电路制造技术对高性能、高集成度和低功耗的需求不断增加,三维集成电路(3D IC)技术成为提升芯片性能和集成度的有效途径。金属Cu具有低电阻率、优异的导热性和抗电迁移能力,能够提供高效的电气连接和热管理性能。低温Cu-Cu键合技术因其在高密度互连、良好的导电性和导热性方面的优势,成为先进封装的核心技术之一。探讨了Cu-Cu键合技术面临的主要挑战及其解决方案,总结了目前主要的几种低温键合技术,分析了它们在实际应用中的优势与不足。尽管Cu-Cu低温键合技术面临诸多技术瓶颈,但随着材料和工艺的不断进步,其在未来电子封装技术中仍具有广阔的应用前景。
中图分类号:
陈桂, 邵云皓, 屈新萍. 三维集成铜-铜低温键合技术的研究进展[J]. 电子与封装, 2025, 25(5): 050106 .
CHEN Gui, SHAO Yunhao, QU Xinping. Research Progress of Three-Dimensional Integrated Copper-Copper Low-Temperature Bonding Technology[J]. Electronics & Packaging, 2025, 25(5): 050106 .
[1] ARNAUD L, KARAM C, BRESSON N, et al. Three-dimensional hybrid bonding integration challenges and solutions toward multi-wafer stacking[J]. MRS Communications, 2020, 10(4): 549-557. [2] WALDROP M M. The chips are down for Moore’s law[J]. Nature, 2016, 530(7589): 144-147. [3] AKASAKA Y. Three-dimensional IC trends[J]. Proceedings of the IEEE, 1986, 74(12): 1703-1714. [4] CHEN C, YU D, CHEN K N. Vertical interconnects of microbumps in 3D integration[J]. MRS Bulletin, 2015, 40(3): 257-263. [5] 戚晓芸, 马岩, 杜玉, 等. 无凸点混合键合三维集成技术研究进展[J]. 电子与封装, 2024, 24(6): 060114. [6] FUKUSHIMA T, KIKUCHI H, YAMADA Y, et al. New three-dimensional integration technology based on reconfigured wafer-on-wafer bonding technique[C]//2007 IEEE International Electron Devices Meeting, Washington, DC, USA, 2007: 985-988. [7] SAKUMA K, ANDRY P S, TSANG C K, et al. 3D chip-stacking technology with through-silicon vias and low-volume lead-free interconnections[J]. IBM Journal of Research and Development, 2010, 52(6): 611-622. [8] HU Y C, CHEN K N. A novel bonding approach and its electrical performance for flexible substrate integration[J]. IEEE Journal of the Electron Devices Society, 2016, 4(4): 185-188. [9] HUFFMAN A, LANNON J, LUECK M, et al. Fabrication and characterization of metal-to-metal interconnect structures for 3-D integration[J]. Journal of Instrumentation, 2009, 4(3): 03006. [10] SAVE D, BRAUD F, TORRES J, et al. Electromigration resistance of copper interconnects[J]. Microelectronic Engineering, 1997, 33(1/2/3/4): 75-84. [11] TAN C S, REIF R. Silicon multilayer stacking based on copper wafer bonding[J]. Electrochemical and Solid-State Letters, 2005, 8(6): G147-G149. [12] DíAZ LEóN J J, FRYAUF D M, CORMIA R D, et al. Study of the formation of native oxide on copper at room temperature[C]//Low-Dimensional Materials and Devices 2016, San Diego, California, USA, 2016. [13] REBHAN B, HINGERL K. Physical mechanisms of copper-copper wafer bonding[J]. Journal of Applied Physics, 2015, 118(13): 135301. [14] KO C T, CHEN K N. Low temperature bonding technology for 3D integration[J]. Microelectronics Reliability, 2012, 52(2): 302-311. [15] 张明辉, 高丽茵, 刘志权, 等. 先进封装铜-铜直接键合技术的研究进展[J]. 电子与封装, 2023, 23(3): 030106. [16] REBHAN B, WIMPLINGER M, HINGERL K. Impact factors on low temperature Cu-Cu wafer bonding[J]. ECS Transactions, 2014, 64(5): 369-377. [17] CHEN K X, GAO L Y, LI Z, et al. Research progress of electroplated nanotwinned copper in microelectronic packaging[J]. Materials (Basel), 2023, 16(13): 4614. [18] TSENG C H, TU K N, CHEN C. Comparison of oxidation in uni-directionally and randomly oriented Cu films for low temperature Cu-to-Cu direct bonding[J]. Scientific Reports, 2018, 8: 10671. [19] 柯鑫, 谢炳卿, 王忠, 等. 第三代半导体互连材料与低温烧结纳米铜材的研究进展[J]. 无机材料学报, 2024, 39(1): 17-31. [20] LU L, SHEN Y, CHEN X, et al. Ultrahigh strength and high electrical conductivity in copper[J]. Science, 2004, 304(5669): 422-426. [21] LU L, CHEN X, HUANG X, et al. Revealing the maximum strength in nanotwinned copper[J]. Science, 2009, 323(5914): 607-610. [22] XU D, KWAN W L, CHEN K, et al. Nanotwin formation in copper thin films by stress/strain relaxation in pulse electrodeposition[J]. 2007, 91(25): 254105. [23] HSIAO H Y, LIU C M, LIN H W, et al. Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper[J]. Science, 2012, 336(6084): 1007-1010. [24] LIU C M, LIN H W, HUANG Y S, et al. Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu[J]. Scientific Reports, 2015, 5: 9734. [25] JUANG J Y, SHIE K C, HSU P N, et al. Low-resistance and high-strength copper direct bonding in no-vacuum ambient using highly (111)-oriented nano-twinned copper[C]//2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 2019: 642-648. [26] YANG S C, CHEN C. High temperature storage of Cu-Cu joints fabricated by highly (111)-oriented nanotwinned Cu[C]//2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2023: 2075-2078. [27] HUANG J Y, CHEN C. Effect of (111) surface ratio on the bonding quality of Cu-Cu joints[C]//2024 IEEE 74th Electronic Components and Technology Conference (ECTC), Denver, CO, USA, 2024: 626-630. [28] ZHANG Y B, GAO L Y, TAO J L, et al. The mechanical property and microstructural thermal stability of gradient-microstructured nanotwinned copper films electrodeposited on the highly (111)-orientated substrates[J]. Materials Today Communications, 2024, 38: 108182. [29] TRAN D P, LI H H, TSENG I H, et al. Enhancement of electromigration lifetime of copper lines by eliminating nanoscale grains in highly-oriented nanotwinned structures[J]. Journal of Materials Research and Technology, 2021, 15: 6690-6699. [30] LI H H, LIANG Z L, NING Z Y, et al. Low-temperature Cu-Cu direct bonding with ultra-large grains using highly (110)-oriented nanotwinned copper[J]. Materials Characterization, 2024, 217: 114455. [31] SIM?ES S, CALINAS R, FERREIRA P J, et al. Effect of annealing conditions on the grain size of nanocrystalline copper thin films[J]. Materials Science Forum, 2008, 587/588: 483-487. [32] HE C, ZHOU J, ZHOU R, et al. Nanocrystalline copper for direct copper-to-copper bonding with improved cross-interface formation at low thermal budget[J]. Nature Communications, 2024, 15(1): 7095. [33] ROUSTAIE F, QUEDNAU S, DASSINGER F, et al. In situ synthesis of metallic nanowire arrays for ionization gauge electron sources[J]. Journal of Vacuum Science & Technology B, 2016, 34(2): 02G103. [34] JIANG H, ROBERTSON S, ZHOU Z X, et al. Cu-Cu bonding with Cu nanowire arrays for electronics integration[C]//2020 IEEE 8th Electronics System-Integration Technology Conference (ESTC), T?nsberg, Vestfold, Norway, 2020. [35] BICKEL S, QUEDNAU S, BIRLEM O, et al. Cu nanowire fine-pitch joints for next gen heterogeneous chiplet integration[C]//2024 IEEE 74th Electronic Components and Technology Conference (ECTC), Denver, CO, USA, 2024: 1376-1381. [36] DU L, SHI T L, SU L, et al. Hydrogen thermal reductive Cu nanowires in low temperature Cu–Cu bonding[J]. Journal of Micromechanics and Microengineering, 2017, 27(7): 075019. [37] GUO T H, MA H R, GUO X. Organic reductor assisted Cu-Cu low temperature bonding in air environment[C]//2024 25th International Conference on Electronic Packaging Technology (ICEPT), Tianjin, China, 2024. [38] ZURCHER J, YU K, SCHLOTTIG G, et al. Nanoparticle assembly and sintering towards all-copper flip chip interconnects[C]//2015 IEEE 65th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2015: 1115-1121. [39] PENG Y, MOU Y, LIU J X, et al. Fabrication of high-strength Cu–Cu joint by low-temperature sintering micron–nano Cu composite paste[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(11): 8456-8463. [40] HUANG Z, WEN J, ZHANG Y, et al. High strength and density Cu-Cu joints formation by low temperature and pressure sintering of different mass ratio of Cu micron-nanoparticles paste[C]. 2021 22nd International Conference on Electronic Packaging Technology (ICEPT), Xiamen, CHINA, 14-17 SEP, 2021: 1-5. [40] HUANG Z W, WEN J, ZHANG Y, et al. High strength and density Cu-Cu joints formation by low temperature and pressure sintering of different mass ratio of Cu micron-nanoparticles paste[C]//2021 22nd International Conference on Electronic Packaging Technology (ICEPT), Xiamen, China, 2021: 1-5. [41] LI J J, LIANG Q, CHEN C, et al. Cu-Cu bonding by low-temperature sintering of self-healable Cu nanoparticles[C]//2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 2019: 661-666. [42] ZHANG Y D, WANG C C, YAO Y, et al. Reconstructing more sinterable surfaces for copper nanoparticles to form high-strength Cu-Cu joints in air atmosphere[C]//2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2022: 1668-1673. [43] KONG M D, LI J J, CAO R Z, et al. Properties of activated formic acid using for low- temperature all-copper interconnect assisted with nanoparticles paste[C]//2024 25th International Conference on Electronic Packaging Technology (ICEPT), Tianjin, China, 2024. [44] EYAMA T, SUZUKI U, INAYA S, et al. A short time and Ni-sinterable Cu sinter paste with highly dispersed submicron Cu particles[C]//2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2023: 1655-1659. [45] PARK M, BAEK S, KIM S, et al. Argon plasma treatment on Cu surface for Cu bonding in 3D integration and their characteristics[J]. Applied Surface Science, 2015, 324: 168-173. [46] TAKAGI H, KIKUCHI K, MAEDA R, et al. Surface activated bonding of silicon wafers at room temperature[J]. Applied Physics Letters, 1996, 68(16): 2222-2224. [47] HE R, FUJINO M, AKAIKE M, et al. Combined surface activated bonding using H-containing HCOOH vapor treatment for Cu/Adhesive hybrid bonding at below 200℃[J]. Applied Surface Science, 2017, 414: 163-170. [48] NIU F F, WANG X B, YANG S H, et al. Low-temperature Cu/SiO2 hybrid bonding based on Ar/H2 plasma and citric acid cooperative activation for multi-functional chip integration[J]. Applied Surface Science, 2024, 648: 159074. [49] KANG Q, WANG C, ZHOU S, et al. Low-temperature co-hydroxylated Cu/SiO2 hybrid bonding strategy for a memory-centric chip architecture[J]. ACS Applied Materials & Interfaces, 2021, 13(32): 38866-38876. [50] PARK H, SEO H, KIM S E. Anti-oxidant copper layer by remote mode N2 plasma for low temperature copper-copper bonding[J]. Scientific Reports, 2020, 10(1): 21720. [51] PARK H, KIM S E. Two-step plasma treatment on copper surface for low-temperature Cu thermo-compression bonding[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10(2): 332-338. [52] SEO H, PARK H, KIM S E. Comprehensive analysis of a Cu nitride passivated surface that enhances Cu-to-Cu bonding[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10(11): 1814-1820. [53] PARK H, SEO H, KIM Y, et al. Low-temperature (260 ℃) solderless Cu–Cu bonding for fine-pitch 3-D packaging and heterogeneous integration[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11(4): 565-572. [54] HUNG T H, LIU P J, WANG C Y, et al. A low-cost passivation for low temperature Cu-Cu bonding using PVD-deposited Cu3N[J]. IEEE Journal of the Electron Devices Society, 2023, 11: 473-479. [55] TAN C S, LIM D F, SINGH S G, et al. Cu-Cu diffusion bonding enhancement at low temperature by surface passivation using self-assembled monolayer of alkane-thiol[J]. Applied Physics Letters, 2009, 95(19): 192108. [56] PENG L, LI H Y, LIM D F, et al. Thermal reliability of fine pitch Cu-Cu bonding with self assembled monolayer (SAM) passivation for Wafer-on-Wafer 3D-Stacking[C]//2011 IEEE 61st Electronic Components and Technology Conference (ECTC), Lake Buena Vista, FL, USA, 2011: 22-26. [57] LIM D F, FAN J, PENG L, et al. Cu-Cu hermetic seal enhancement using self-assembled monolayer passivation[J]. Journal of Electronic Materials, 2013, 42(3): 502-506. [58] HUANG Y P, CHIEN Y S, TZENG R N, et al. Novel Cu-to-Cu bonding with Ti passivation at 180 in 3-D integration[J]. IEEE Electron Device Letters, 2013, 34(12): 1551-1553. [59] BONAM S, PANIGRAHI A K, KUMAR C H, et al. Interface and reliability analysis of Au-passivated Cu–Cu fine-pitch thermocompression bonding for 3-D IC applications[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9(7): 1227-1234. [60] LIU D M, CHEN P C, LIU Y W, et al. Low-temperature (70 ℃) Cu-to-Cu direct bonding by capping metal layers[J]. IEEE Electron Device Letters, 2021, 42(10): 1524-1527. [61] CHOU T C, HUANG S Y, CHEN P J, et al. Electrical and reliability investigation of Cu-to-Cu bonding with silver passivation layer in 3-D integration[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 11(1): 36-42. [62] JEON C, KANG S, KIM M E, et al. Ru passivation layer enables Cu-Cu direct bonding at low temperatures with oxidation inhibition[J]. ACS Applied Materials & Interfaces, 2024, 16(36): 48481-48487. [63] BONAM S, CHEEMALAMARRI H K, VANJARI S R K, et al. Diffusion enhanced optimized thin passivation layer for realizing copper to copper wafer bonding at low thermal budget[C]//2022 IEEE 24th Electronics Packaging Technology Conference (EPTC), Singapore, Singapore, 2022: 344-347. [64] MOON P, DUBIN V, JOHNSTON S, et al. Process Roadmap and Challenges for Metal Barriers[C]// 2003 IEEE International Electron Devices Meeting, Technical Digest, Washington, DC, USA, 2003: 841-844. [64] MOON P, DUBIN V, JOHNSTON S, et al. Process roadmap and challenges for metal barriers[C]// 2003 IEEE International Electron Devices Meeting, Technical Digest, Washington, DC, USA, 2003: 841-844. [65] WANG P, SHAO Y H, NI Z H, et al. Low-temperature copper-copper quasi-direct bonding with cobalt passivation layer[J]. AIP Advances, 2022, 12(11): 115101. [66] SHAO Y H, NI Z H, CHEN G, et al. Low contact resistance copper-copper bonding with selective electroless plating cobalt interlayer[C]//2024 IEEE International Interconnect Technology Conference (IITC), San Jose, CA, USA, 2024. [67] CHEN G, SHAO Y H, QU X P. The investigation of Ar plasma treatment on the contact resistance between metal-metal by a simple metal bonding simulation approach[C]//2024 IEEE International Interconnect Technology Conference (IITC), San Jose, CA, USA, 2024. [68] SHI Y F, WANG Z L, ZHANG H W, et al. Transient-liquid-phase bonding of granulated Cu–Sn bumps with a 4-μm fine pitch[J]. IEEE Transactions on Electron Devices, 70(2): 683-688. [69] WANG Z L, SHI Y F, WANG Z Y. Low temperature Cu-Cu bonding using an intermediate sacrificial Sn layer[J]. IEEE Electron Device Letters, 2023, 44(1): 116-119. [70] HONG Z J, LIU D M, HU H W, et al. Investigation of bonding mechanism for low-temperature Cu Cu bonding with passivation layer[J]. Applied Surface Science, 2022, 592: 153243. [71] JEONG M S, PARK S W, KIM Y J, et al. Unraveling diffusion behavior in Cu-to-Cu direct bonding with metal passivation layers[J]. Scientific Reports, 2024, 14(1): 6665. [72] PANIGRAHI A K, BONAM S, GHOSH T, et al. Ultra-thin Ti passivation mediated breakthrough in high quality Cu-Cu bonding at low temperature and pressure[J]. Materials Letters, 2016, 169: 269-272. [73] HUANG Y P, CHIEN Y S, TZENG R N, et al. Demonstration and electrical performance of Cu–Cu bonding at 150 ℃ with Pd passivation[J]. IEEE Transactions on Electron Devices, 2015, 62(8): 2587-2592. [74] PANIGRAHI A K, GHOSH T, VANJARI S R K, et al. Demonstration of sub 150℃ Cu-Cu thermocompression bonding for 3D IC applications, utilizing an ultra-thin layer of Manganin alloy as an effective surface passivation layer[J]. Materials Letters, 2017, 194: 86-89. [75] LIU D M, CHEN P C, TSAI Y C, et al. Low temperature Cu to Cu direct bonding below 150 ℃ with Au passivation layer[C]//2019 International 3D Systems Integration Conference (3DIC), Sendai, Japan, 2019: 1-4. [76] LIU D M, KUO T Y, LIU Y W, et al. Investigation of low-temperature Cu–Cu direct bonding with Pt passivation layer in 3-D integration[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11(4): 573-578. [77] LIU D M, MEI K C, HU H W, et al. Investigation of low temperature co-co direct bonding and co-passivated Cu-Cu direct bonding[C]//2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2022: 187-193. [78] PARK S W, HONG S K, KIM S E, et al. First demonstration of enhanced Cu-Cu bonding at low temperature with ruthenium passivation layer[J]. IEEE Access, 2024, 12: 82396-82401. [79] HSU M P, CHEN C H, HONG Z J, et al. Enhancement of low-temperature Cu-Cu bonding by metal alloy passivation in ambient atmosphere[J]. IEEE Electron Device Letters, 2024, 45(8): 1500-1503. [80] HUNG T H, KANG T C, MAO S Y, et al. Investigation of wet pretreatment to improve Cu-Cu bonding for hybrid bonding applications[C]//2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2021: 700-705. [81] ONG J J, TRAN D P, CHIU W L, et al. Surface modification on hydrophilicity enhancement using NH4OH, NaOH, and KOH on fine-pitch low-temperature Cu/SiO2 Hybrid Bonding[C]//2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2023: 1549-1552. [82] YANG W H, LU Y T, ZHOU C G, et al. Study of Cu film surface treatment using formic acid vapor/solution for low temperature bonding[J]. Journal of the Electrochemical Society, 2018, 165(4): H3080-H3084. [83] YANG W H, AKAIKE M, SUGA T. Effect of formic acid vapor in situ treatment process on Cu low-temperature bonding[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2014, 4(6): 951-956. [84] CHOU P W, SONG J M, XIE Z Y, et al. Low temperature de-oxidation for copper surface by catalyzed formic acid vapor[J]. Applied Surface Science, 2018, 456: 890-898. [85] JANGAM S, BAJWA A A, MOGERA U, et al. Fine-pitch (≤10 μm) direct Cu-Cu interconnects using in situ formic acid vapor treatment[C]//2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 2019: 620-627. [86] WANG X C, HAN S, XIAO F. Cu-Cu direct bonding in air by in situ reduction of copper oxide with glycerol[J]. Applied Surface Science, 2024, 659: 159945. [87] LI M J, BREEDEN M, WANG V, et al. Cu-Cu bonding using selective cobalt atomic layer deposition for 2.5-D/3-D chip integration technologies[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10(12): 2125-2128. [88] MANLEY M, DEVEREAUX Z J, WANG V, et al. Towards selective cobalt atomic layer deposition for chip-to-wafer 3D heterogeneous integration[C]//2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2023: 374-378. [89] KOO H C, SAHA R, KOHL P A. Copper electroless bonding of dome-shaped pillars for chip-to-package interconnect[J]. Journal of the Electrochemical Society, 2011, 158(12): D698-D703. [90] SHIH P S, HUANG J H, SHEN C H, et al. Low-temperature and pressureless Cu-to-Cu bonding by electroless Pd plating using microfluidic system[C]//2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2023: 579-584. [91] YANG S A, HUNG H T, CHEN Y B, et al. Bonding of copper pillars using electroless Ni plating[C]//2016 International Conference on Electronics Packaging (ICEP), Hokkaido, Japan, 2016: 493-496. [92] WENG I A, HUNG H T, YANG S, et al. Bonding of copper pillars using electroless Au plating[C]//2018 International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC), Mie, Japan, 2018: 87-90. [93] YANG H Z, WANG Y, CHEN M M, et al. Research on electroplating bonding of flip-chip under the action of additives[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2023, 13(8): 1324-1331. [94] JOUNG Y H, ALLEN M G. Inter-substrate microstructure formation by electroplating bonding technology[J]. Journal of Micromechanics and Microengineering, 2008, 18(4): 045020. [95] YANG Y T, CHOU T C, YU T Y, et al. Low-temperature Cu–Cu direct bonding using pillar–concave structure in advanced 3-D heterogeneous integration[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(9): 1560-1566. [96] CHOU T C, YANG K M, LI J C, et al. Investigation of pillar–concave structure for low-temperature Cu–Cu direct bonding in 3-D/2.5-D heterogeneous integration[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10(8): 1296-1303. |
[1] | 吴艺雄, 杜韵辉, 陶泽明, 钟毅, 于大全. 混合键合界面接触电阻及界面热阻研究进展*[J]. 电子与封装, 2025, 25(5): 50101-. |
[2] | 刘旭东, 撒子成, 李浩喆, 李嘉琦, 田艳红. 先进铜填充硅通孔制备技术研究进展*[J]. 电子与封装, 2025, 25(5): 50103-. |
[3] | 白玉斐,戚晓芸,牛帆帆,康秋实,杨佳,王晨曦. 面向高密度互连的混合键合技术研究进展*[J]. 电子与封装, 2025, 25(5): 50102-. |
[4] | 杨刚力, 常柳, 于道江, 李亚男, 朱宏佳, 丁子扬, 李力一. 混合键合中铜焊盘的微纳结构设计与工艺优化研究进展*[J]. 电子与封装, 2025, 25(5): 50108-. |
[5] | 张冉远, 翁铭, 黄文俊, 张昱, 杨冠南, 黄光汉, 崔成强. 先进封装中铜柱微凸点互连技术研究进展*[J]. 电子与封装, 2025, 25(5): 50109-. |
[6] | 李林玲,王勇,印大维,章晨,滕超,陈葳,江伟,李大双,郑小伟,周东山,薛奇. 基于AFM-IR的电子铜箔表面痕量有机物的原位检测与去除*[J]. 电子与封装, 2025, 25(4): 40202-. |
[7] | 宋海涛,王霄,龚平,朱霞,李杨,刘璋成,闫大为,陈治伟,尤杰,敖金平. GaN芯片封装技术研究进展与趋势*[J]. 电子与封装, 2025, 25(3): 30112-. |
[8] | 单光宝;凡翔;郑彦文;曹会华. 基于Chiplet的三维集成计算与存储架构*[J]. 电子与封装, 2024, 24(9): 90201-. |
[9] | 陈祎;岳琨;吕复强;姚大平. 集成电路异构集成封装技术进展[J]. 电子与封装, 2024, 24(9): 90207-. |
[10] | 刘冠东;王伟豪;万智泉;段元星;张坤;李洁;戚定定;王传智;李顺斌;邓庆文;张汝云. 晶上系统:设计、集成及应用[J]. 电子与封装, 2024, 24(8): 80201-. |
[11] | 徐成,樊嘉祺,张宏伟,王华,陈天放,刘丰满. 硅转接板制造与集成技术综述[J]. 电子与封装, 2024, 24(6): 60106-. |
[12] | 范泽域, 王方成, 刘强, 黄明起, 叶振文, 张国平, 孙蓉. 三维集成电路先进封装中聚合物基材料的研究进展*[J]. 电子与封装, 2024, 24(6): 60107-. |
[13] | 马书英, 付东之, 刘轶, 仲晓羽, 赵艳娇, 陈富军, 段光雄, 边智芸. 硅通孔三维互连与集成技术[J]. 电子与封装, 2024, 24(6): 60109-. |
[14] | 张爱兵, 李洋, 姚昕, 李轶楠, 梁梦楠. 基于硅通孔互连的芯粒集成技术研究进展[J]. 电子与封装, 2024, 24(6): 60110-. |
[15] | 王九如,朱智源. 基于TSV的三维集成系统电热耦合仿真设计[J]. 电子与封装, 2024, 24(6): 60113-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
访问总数: 当日访问总数: 当前在线:
版权所有 © 2019-2024 中国电子科技集团公司第五十八研究所 苏ICP备11028747号
地址:江苏省无锡市滨湖区惠河路5号 邮编:214035 电话:0510-85860386(林编辑);0510-85868956(俞编辑,史编辑) 电子邮箱:ep.cetc58@163.com
本系统由北京玛格泰克科技发展有限公司设计开发