[1] ROCCAFORTE F, FIORENZA P, GRECO G, et al. Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices[J]. Microelectronic Engineering, 2018, 187: 66-77. [2] 房卫萍, 史耀武, 夏志东, 等. 电子组装用高温无铅钎料的研究进展[J]. 电子元件与材料, 2009, 28(3): 71-74. [3] LI W L, LI Y T, WANG Y J, et al. Pressureless sinter-joining of micron-Ag flake pastes at 160 ℃ enabled by solvent and interface engineering[J]. Journal of Materials Processing Technology, 2023, 322: 118207. [4] 杨婉春, 胡少伟, 祝温泊, 等. 低温烧结纳米银膏研究进展[J]. 焊接学报, 2022, 43(11): 137-146. [5] ZHAO L B, DAI Y W, QIN F. Deep learning assisted prediction on main factors influencing shear strength of sintered nano Ag-Al joints under high temperature aging[J]. Engineering Failure Analysis, 2025, 167: 109028. [6] ZHAO L B, DAI Y W, WEI J H, et al. Deep neural network aided cohesive zone parameter identifications through die shear test in electronic packaging[J]. Fatigue & Fracture of Engineering Materials & Structures, 2024, 47(3): 766-780. [7] CHEN C T, CHOE C, KIM D, et al. Effect of oxygen on microstructural coarsening behaviors and mechanical properties of Ag sinter paste during high-temperature storage from macro to micro[J]. Journal of Alloys and Compounds, 2020, 834: 155173. [8] ZHANG H Q, WANG W G, BAI H L, et al. Microstructural and mechanical evolution of silver sintering die attach for SiC power devices during high temperature applications[J]. Journal of Alloys and Compounds, 2019, 774: 487-494. [9] ZHAO S, DAI Y W, QIN F, et al. On mode II fracture toughness of sintered silver based on end-Notch flexure (ENF) test considering various sintering parameters[J]. Materials Science and Engineering: A, 2021, 823: 141729. [10] QIN F, ZHAO S, DAI Y W, et al. Indentation tests for sintered silver in die-attach interconnection after thermal cycling[J]. Journal of Electronic Packaging, 2022, 144(3): 031012. [11] TAN Y S, LI X, CHEN G, et al. Effects of thermal aging on long-term reliability and failure modes of nano-silver sintered lap-shear joint[J]. International Journal of Adhesion and Adhesives, 2020, 97: 102488. [12] YU F, CUI J Z, ZHOU Z M, et al. Reliability of Ag sintering for power semiconductor die attach in high-temperature applications[J]. IEEE Transactions on Power Electronics, 2017, 32(9): 7083-7095. [13] HUANG W C, TSAI C H, LEE P T, et al. Effects of bonding pressures on microstructure and mechanical properties of silver-tin alloy powders synthesized by ball milling for high-power electronics packaging[J]. Journal of Materials Research and Technology, 2022, 19: 3828-3841. [14] SUGIURA K, IWASHIGE T, TSURUTA K, et al. Thermal stability improvement of sintered Ag die-attach materials by addition of transition metal compound particles[J]. Applied Physics Letters, 2019, 114(16): 161903. [15] DAI Y W, ZAN Z, ZHAO S, et al. Shearing fracture toughness enhancement for sintered silver with nickel coated multiwall carbon nanotubes additive[J]. Engineering Fracture Mechanics, 2022, 260: 108181. [16] DAI Y W, ZHAO L B, ZAN Z, et al. Mode I fracture of sintered nano-silver doped with nickel-coated multiwall carbon nanotube[J]. Materials Science in Semiconductor Processing, 2024, 174: 108171. [17] WANG J H, YODO S, TATSUMI H, et al. Reliability-enhanced microscale Ag sintered joint doped with AlN nanoparticles[J]. Materials Letters, 2023, 349: 134845. [18] ZHANG H, NAGAO S, SUGANUMA K. Addition of SiC particles to Ag die-attach paste to improve high-temperature stability; grain growth kinetics of sintered porous Ag[J]. Journal of Electronic Materials, 2015, 44(10): 3896-3903. [19] HIRATSUKA D, SASAKI A, IGUCHI T, et al. Metal salt solution-nanoprecipitation method for improvement in reliability of sintered Ag nanoparticle bonding[J]. International Symposium on Microelectronics, 2015, 2015(1): 669-674. [20] CHEN C T, ZHANG Z, KIM D, et al. Interfacial oxidation protection and thermal-stable sinter Ag joining on bare Cu substrate by single-layer graphene coating[J]. Applied Surface Science, 2019, 497: 143797. [21] CHEN C T, SUGANUMA K, IWASHIGE T, et al. High-temperature reliability of sintered microporous Ag on electroplated Ag, Au, and sputtered Ag metallization substrates[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(3): 1785-1797. [22] ZHANG Z, CHEN C T, WU A T, et al. Improvement of high-temperature thermal aging reliability of Ag-Au joints by modifying Ni/Au surface finish[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(22): 20292-20301. [23] DAI Y W, ZAN Z, ZHAO L B, et al. Nanoindentation elastoplastic and creep behaviors of sintered nano-silver doped with nickel-modified multiwall carbon nanotube filler[J]. Journal of Electronic Materials, 2024, 53(2): 1035-1057. [24] NOH S, ZHANG H, SUGANUMA K, et al. Heat-resistant microporous Ag die-attach structure for wide band-gap power semiconductors[J]. Materials, 2018, 11(12): 2531. [25] ZHANG H, CHEN C T, JIU J T, et al. High-temperature reliability of low-temperature and pressureless micron Ag sintered joints for die attachment in high-power device[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(10): 8854-8862. [26] KIM D, CHEN C, NOH S, et al. Development of high-strength and superior thermal shock-resistant GaN/DBA die attach structure with Ag sinter joining by thick Ni metallization[J]. Microelectronics Reliability, 2019, 100/101: 113380. [27] SAKAMOTO S, NAGAO S, SUGANUMA K. Thermal fatigue of Ag flake sintering die-attachment for Si/SiC power devices[J]. Journal of Materials Science: Materials in Electronics, 2013, 24(7): 2593-2601. [28] YANG D S, HUANG Y L, TIAN Y H, et al. Microstructure of Ag nano paste joint and its influence on reliability[J]. Crystals, 2021, 11(12): 1537. [29] ZHANG H, CHEN C T, NAGAO S, et al. Thermal fatigue behavior of silicon-carbide-doped silver microflake sinter joints for die attachment in silicon/silicon carbide power devices[J]. Journal of Electronic Materials, 2017, 46(2): 1055-1060. [30] XU Y X, QIU X M, LI W Y, et al. Development of high thermal conductivity of Ag/diamond composite sintering paste and its thermal shock reliability evaluation in SiC power modules[J]. Journal of Materials Research and Technology, 2023, 26: 1079-1093. [31] CHEN C T, CHOE C, ZHANG Z, et al. Low-stress design of bonding structure and its thermal shock performance (? 50 to 250 ℃) in SiC/DBC power die-attached modules[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(16): 14335-14346. [32] 王振廷, 李长青. 材料物理性能[M]. 哈尔滨: 哈尔滨工业大学出版社, 2011: 120-202. [33] KIM M S, HONG W S, KIM Y M. Bonding characteristics of solder and sinter joints on active-metal-brazing substrates with nano sputtered Ag-Cu-Ti brazing filler metal[J]. Journal of Welding and Joining, 2023, 41(6): 558-565. [34] SIOW K S, CHUA S T. Thermal cycling of sintered silver (Ag) joint as die-attach material[J]. JOM: The Journal of The Minerals, Metals & Materials Society (TMS), 2019, 71(9): 3066-3075. [35] YANG F, HU B, PENG Y, et al. Ag microflake-reinforced nano-Ag paste with high mechanical reliability for high-temperature applications[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(6): 5526-5535. [36] CHEN C T, KIM D, ZHANG Z, et al. Interface-mechanical and thermal characteristics of Ag sinter joining on bare DBA substrate during aging, thermal shock and 1200 W/cm2 power cycling tests[J]. IEEE Transactions on Power Electronics, 2022, 37(6): 6647-6659. [37] KIM D, CHEN C T, PEI C, et al. Thermal shock reliability of a GaN die-attach module on DBA substrate with Ti/Ag metallization by using micron/submicron Ag sinter paste[J]. Japanese Journal of Applied Physics, 2019, 58: SBBD15. [38] LIU Y, CHEN C T, KIM D, et al. Modified Ni/Pd/Au-finished DBA substrate for deformation-resistant Ag-Au joint during long-term thermal shock test[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(15): 20384-20393. [39] LIU Y, CHEN C T, ZHANG Z, et al. Development of crack-less and deformation-resistant electroplated Ni/electroless Ni/Pt/Ag metallization layers for Ag-sintered joint during a harsh thermal shock[J]. Materials & Design, 2022, 224: 111389. [40] DAI J R, LI J F, AGYAKWA P, et al. Comparative thermal and structural characterization of sintered nano-silver and high-lead solder die attachments during power cycling[J]. IEEE Transactions on Device and Materials Reliability, 2018, 18(2): 256-265. [41] ?ZKOL E, BREM F, LIU C L, et al. Enhanced power cycling performance of IGBT modules with a reinforced emitter contact[J]. Microelectronics Reliability, 2015, 55(6): 912-918. [42] ZHANG Z, CHEN C T, SUETAKE A, et al. Reliability of Ag sinter-joining die attach under harsh thermal cycling and power cycling tests[J]. Journal of Electronic Materials, 2021, 50(12): 6597-6606. [43] REN H, ZOU G S, JIA Q, et al. Thermal stress reduction strategy for high-temperature power electronics with Ag sintering[J]. Microelectronics Reliability, 2021, 127: 114379. [44] WANG M Y, MEI Y H, LIU W, et al. Reliability improvement of a double-sided IGBT module by lowering stress gradient using molybdenum buffers[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7(3): 1637-1648.
|