[1] DENG Y, ZHAO X K, HE L, et al. Vacuum fluxless reflow technology for fine pitch first level interconnect bumping applications[C]// 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2022: 1244-1248. [2] DONG C C, PATRICK R E, SIMINSKI R A, et al. 活化氢气氛下的无助焊剂焊接[J]. 电子工业专用设备, 2016, 45(8): 1-4,34. [3] LEE N C, BIXENMAN M. Flux technology for lead-free alloys and its impact on cleaning[C]// 27th Annual IEEE/SEMI International Electronics Manufacturing Technology Symposium, San Jose, CA, USA, 2002: 316-322. [4] HE S L, NISHIKAWA H. Effect of substrate metallization on the impact strength of Sn-Ag-Cu solder bumps fabricated in a formic acid atmosphere[C]// 2017 International Conference on Electronics Packaging (ICEP), Yamagata, Japan, 2017: 381-385. [5] HE S, NISHIKAWA H. Effect of heating conditions on void formation during soldering using formic acid atmosphere[J]. National Meeting of Japan Welding Society, 2016, 98: 158-159. [6] 刘璐, 程东明, 卢显丽. 无助焊剂条件下SnAgCu/Cu钎焊接头金属间化合物的生长规律[J]. 热加工工艺, 2017, 46(13): 68-71. [7] 孙广辉. 助焊剂残留对PCB的影响[J]. 印制电路信息, 2011, 19(S1): 209-213. [8] BU?EK D, DU?EK K, R??I?KA D, et al. Flux effect on void quantity and size in soldered joints[J]. Microelectronics Reliability, 2016, 60: 135-140. [9] CICERONE R J, STOLARSKI R S, WALTERS S. Stratospheric ozone destruction by man-made chlorofluoromethanes[J]. Science, 1974, 185(4157): 1165-1167. [10] STOLARSKI R S, CICERONE R J. Stratospheric chlorine: A possible sink for ozone[J]. Canadian Journal of Chemistry, 1974, 52(8): 1610-1615. [11] ROWLAND F S. Chlorofluorocarbons and the depletion of stratospheric ozone[J]. American Scientist, 1989, 77(1): 36-45. [12] 邓明志, 刘建波, 郝伟, 等. 甲酸生产工艺及提纯方法[J]. 化工设计通讯, 2023, 49(9): 121-123. [13] MATSUKI H, MATSUI H, WATANABE E. Fluxless bump reflow using carboxylic acid[C]// Proceedings International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces, Braselton, GA, USA, 2001: 135-139. [14] OZAWA N. Real-time measurement and studly of reduction process of copper oxide film by formic acid[J]. Journal of The Japan Institute of Electronics Packaging, 2017, 20(4): 219-227. [15] OZAWA N, OKUBO T, MATSUDA J, et al. Observation and analysis of metal oxide reduction by formic acid for soldering[C]// 2016 11th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), Taipei, China, 2016: 148-151. [16] OZAWA N, OKUBO T, MATSUDA J, et al. Sn- and Cu-oxide reduction by formic acid and its application to power module soldering[C]// 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Chicago, IL, USA, 2018: 248-251. [17] SAMSON M, OBERSON V, PAQUIN I, et al. Fluxless chip join process using formic acid atmosphere in a continuous mass reflow furnace[C]// 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 2016: 574-579. [18] 段祥飞. 半导体激光器封装及甲酸气体回流烧结技术[D]. 郑州: 郑州大学, 2016. [19] HUANG S Y, CHANG T C, LIN Y M, et al. Reliability performance of 30μm-pitch solder micro bump fluxless bonding interconnections[C]// 2018 International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC), Mie, Japan, 2018: 419-422 [20] SCHMEI?ER M, SCHUSTER J. Decomposition of formic acid[EB/OL]. [2024-05-29]. https://arxiv.org/abs/1108.5891v1. [21] BI Y, HE S, LI W, et al. Wettability improvement of solder in fluxless soldering under formic acid atmosphere[C]// 2021 22nd International Conference on Electronic Packaging Technology (ICEPT), IEEE, 2021: 1-4. [22] 闵志先. 无焊剂软钎焊技术研究[J]. 电子工艺技术, 2014, 35(1):19-21, 25. [23] 毕宇浩. 甲酸气氛下无残留Sn-Bi焊点性能调控研究[D]. 桂林: 桂林电子科技大学, 2023. [24] HE S L, BI Y H, SHEN Y, et al. Contact angle analysis and intermetallic compounds formation between solders and substrates under formic acid atmosphere[J]. Journal of Advanced Joining Processes, 2022, 6: 100118. [25] MONTA M, OKIYAMA K, SAKAI T, et al. Formation of solder cap on Cu pillar bump using formic acid reduction[C]// 2012 IEEE 14th Electronics Packaging Technology Conference (EPTC), Singapore, 2012: 602-607. [26] YANG W H, ZHOU C G, ZHOU J, et al. Cu film surface reduction through formic acid vapor/solution for 3-D interconnection[C]// 2018 19th International Conference on Electronic Packaging Technology (ICEPT), Shanghai, China, 2018: 1378-1381. [27] LIN Y S, SHIH C H, CHANG W. Fluxless reflow of eutectic solder bump using formic acid[C]// Proceedings of the 2009 12th International Symposium on Integrated Circuits, Singapore, 2009: 514-517. [28] 钱泳亮. 使用甲酸的无助焊剂回流方法及甲酸回流装置: CN105562870A[P]. 2016-05-11. [29] LIN W, LEE Y C. Study of fluxless soldering using formic acid vapor[J]. IEEE Transactions on Advanced Packaging, 1999, 22(4): 592-601. [30] HIDAKA N, NAGANO M, SHIMODA M, et al. Microjoining and assembly technology in electronics[C]// Effect of Addition Elements on Creep Properties of Sn-Ag-Cu Lead Free Solder, 2005: 171-176. [31] CONTI F, HANSS A, FISCHER C, et al. Thermogravimetric investigation on the interaction of formic acid with solder joint materials[J]. New Journal of Chemistry, 2016, 40(12): 10482-10487. [32] KANG H, LEE M J, SUN D, et al. Formation of octahedral corrosion products in Sn-Ag flip chip solder bump[J]. Scripta Materialia, 2015, 108: 126-129. [33] JING L, KUDRIAVTSEV V, NGUYEN T, et al. Impact of process parameters on vacuum fluxless solder reflow performance in backend applications with bump pitch of 15μm and below[C]// 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2023: 1541-1548. [34] ARSLANIAN G K, DONG C C, PATRICK R E, et al. Fluxless soldering in activated hydrogen atmosphere[C]// 2020 International Wafer Level Packaging Conference (IWLPC), San Jose, CA, USA, 2020: 1-8. [35] LEMIEUX P, TONG T, BROWN K. The benefits of a flux-free atmosphere for wafer bump reflow[C]// IEEE/CPMT/SEMI 28th International Electronics Manufacturing Technology Symposium, 2003. IEMT, San Jose, CA, USA, 2003: 335-337. [36] DONG C C, PATRICK R E, ARSLANIAN G K, et al. Production-scale flux-free bump reflow using electron attachment[C]// 2017 China Semiconductor Technology International Conference (CSTIC), Shanghai, China, 2017: 1-3. (—)(—)
|