中国半导体行业协会封装分会会刊

中国电子学会电子制造与封装技术分会会刊

导航

电子与封装

• 综述 •    下一篇

面向高密度互连的混合键合技术研究进展

白玉斐,戚晓芸,牛帆帆,康秋实,杨佳,王晨曦   

  1. 哈尔滨工业大学材料结构精密焊接与连接全国重点实验室,哈尔滨  150001
  • 收稿日期:2024-12-30 修回日期:2025-01-29 出版日期:2025-02-17 发布日期:2025-02-17
  • 通讯作者: 王晨曦
  • 基金资助:
    国家自然科学基金重大研究计划(92164105);黑龙江省头雁团队(HITTY-20190013);材料结构精密焊接与连接全国重点实验室自主课题(24-T-04)

Research Progress of Hybrid Bonding Technology for High-Density Interconnects

BAIYufei, QI Xiaoyun, NIU Fanfan, KANG Qiushi, YANG Jia, WANG Chenxi   

  1. State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
  • Received:2024-12-30 Revised:2025-01-29 Online:2025-02-17 Published:2025-02-17
  • Contact: Chenxi Wang

摘要: 在数字经济时代,人工智能、高性能计算、大数据、物联网和自动驾驶等新兴产业的迅猛发展对计算能力提出了极高的需求。然而,随着先进制程逐渐逼近物理极限,摩尔定律的发展速度显著放缓,传统的引线键合技术已难以满足数字经济对高算力芯片的需求。在此背景下,三维集成技术作为一种革命性的解决方案应运而生。混合键合作为三维集成技术的基石,通过金属层和金属层、介电层和介电层的直接键合,实现了无凸点的高密度互连。与传统键合技术相比,混合键合不仅能够实现亚微米甚至纳米级的互连间距,还显著降低了信号延迟与功耗,提升了芯片的带宽与容量,为高性能芯片的实现提供了关键支持。在后摩尔时代,混合键合被视为先进封装的核心发展方向,可实现窄间距、高密度、小尺寸的互连结构,满足新兴应用场景对芯片性能的苛刻要求。本文系统介绍了面向高密度互连的混合键合技术,重点总结了其所采用的新型金属钝化层等关键材料以及核心工艺,深入论述了混合键合技术在高带宽内存等领域的应用现状及发展趋势,旨在为先进封装技术的持续创新与发展提供参考与思路。

关键词: 混合键合, 高密度互连, 三维集成, 高带宽内存

Abstract: In the era of the digital economy, the rapid advancement of emerging industries such as artificial intelligence, high-performance computing, big data, the Internet of Things, and autonomous driving has placed unprecedented demands on computational power. However, as advanced process nodes approach physical limits, the pace of Moore's Law has significantly slowed, and traditional wire bonding technologies are no longer capable of meeting the computational demands of high-performance chips in the digital economy. Against this backdrop, 3D integration technologies have emerged as a transformative solution. As a cornerstone of 3D integration technologies, hybrid bonding enables bump-less, high-density interconnections through the direct bonding of metal-to-metal layers and dielectric-to-dielectric layers. Compared with conventional bonding techniques, hybrid bonding not only achieves sub-micron or even nanometer-scale interconnect pitches but also significantly reduces signal delay and power consumption, thereby enhancing chip bandwidth and capacity. This makes hybrid bonding a critical enabler for high-performance chips. In the post-Moore era, hybrid bonding is regarded as a core development direction in advanced packaging, offering narrow-pitch, high-density, and compact interconnect structures to meet the stringent performance requirements of emerging applications. This article provides a comprehensive review of hybrid bonding technologies for high-density interconnects, with a focus on the novel materials, such as advanced metal passivation layers, and the key processes employed. Furthermore, it examines the current state of applications in fields like high-bandwidth memory (HBM) and discusses future development trends, aiming to provide valuable insights and guidance for the continued innovation and evolution of advanced packaging technologies.

Key words: Hybrid bonding, high-density interconnects, 3D integration, high-bandwidth memory