中国半导体行业协会封装分会会刊

中国电子学会电子制造与封装技术分会会刊

导航

电子与封装

• 材料、器件与工艺 •    下一篇

GaN HEMT可靠性研究综述

杨天晴,邢宗锋,母欣荣,赵钢,文科,罗俊   

  1. 中国电子科技集团公司第二十四研究所,重庆  400060
  • 收稿日期:2025-09-23 修回日期:2025-12-04 出版日期:2025-12-05 发布日期:2025-12-05
  • 通讯作者: 杨天晴
  • 基金资助:
    重庆市自然科学基金(W2170020240025)

Review of Reliability in GaN HEMT

YANG Tianqing, XING Zongfeng, MU Xinrong, ZHAO Gang, WEN Ke, LUO Jun   

  1. China Electronics Technology Group Corporation No. 24 Research Institute, Chongqing 400060, China
  • Received:2025-09-23 Revised:2025-12-04 Online:2025-12-05 Published:2025-12-05

摘要: 以氮化镓(GaN)为代表的第三代宽禁带半导体,凭借其卓越的物理特性,正在引领电力电子领域的新一轮技术革命。GaN高电子迁移率晶体管(HEMT)在实现高效、高频、小型化的新一代电力电子系统中展现出巨大潜力。然而,与成熟的硅基技术相比,GaN器件的可靠性问题是制约其大规模商业化应用的核心瓶颈。本文旨在对GaN器件的可靠性研究现状进行系统性的回顾与总结。首先,文章阐述了典型的GaN HEMT的基本结构与工作原理,分析了其关键电学参数。随后,本文剖析了GaN器件在复杂电、热、机械应力下的主要失效机制,重点探讨了由逆压电效应、陷阱效应、短路以及热应力集中等引发的器件退化与失效物理。在此基础上,文章进一步梳理和介绍了旨在提升器件可靠性的关键技术,涵盖了从优化材料外延生长、革新热管理方案到采用先进的器件结构设计等多个层面。本综述旨在为从事GaN技术研究与应用的科研人员和工程师提供一个参考,以期推动GaN器件可靠性问题的解决,加速其在关键领域的应用进程。

关键词: 氮化镓, 高电子迁移率晶体管, 可靠性分析

Abstract: Third-generation wide-bandgap semiconductors, represented by gallium nitride (GaN), are spearheading a new technological revolution in power electronics due to their superior physical properties. In particular, gan high electron mobility transistors (HEMT) demonstrate immense potential for realizing next-generation power electronic systems that are highly efficient, operate at high frequencies, and are compact. However, compared to mature silicon-based technologies, reliability issues in GaN devices remain a critical bottleneck restricting their large-scale commercialization. This paper aims to provide a systematic review and summary of the current state of research on GaN device reliability. First, the fundamental structure and operating principles of a typical GaN HEMT are described, and its key electrical parameters are analyzed. Subsequently, this paper dissects the primary failure mechanisms of GaN devices under complex electrical, thermal, and mechanical stress. A particular focus is placed on the physics of device degradation and failure induced by the inverse piezoelectric effect, trapping effects, short circuits, and thermal stress concentration. Building upon this analysis, the paper further reviews and introduces key technologies aimed at enhancing device reliability, covering various aspects from optimizing material epitaxial growth and innovating thermal management solutions to adopting advanced device structures. This review is intended to serve as a valuable reference for scientists and engineers engaged in GaN technology research and application, with the goal of promoting the resolution of GaN device reliability challenges and accelerating their adoption in critical application domains.

Key words: GaN, High Electron Mobility Transistor, Reliability Analysis