[1] BAR-COHEN A, MAURER J J, SIVANANTHAN A. Near-junction microfluidic cooling for wide bandgap devices[J]. MRS Advances, 2016, 1(2): 181-195. [2] LI M D, SHEN X Q, CHEN X, et al. Thermal management of chips by a device prototype using synergistic effects of 3-D heat-conductive network and electrocaloric refrigeration[J]. Nature Communications, 2022, 13(1): 5849 [3] Madelung O, White G K. Landolt-Bo?rnstein—Group III Con‐densed Matter. Metals: Electronic Transport Phenomena Thermal Conductivity of Pure Metals and Alloys[M]. Berlin: Springer, 1991: 12. [4] 王奥, 盛宇飞, 鲍华. 金属导热理论的研究进展与前沿问题[J]. 物理学报, 2024, 73(3): 202-213 [5] CHANG Y W, YAO X Y, CHEN Y Y, et al. Review on ceramic-based composite phase change materials: Preparation, characterization and application[J]. Composites Part B: Engineering, 2023, 254: 110584. [6] ZOU D X, GONG D W, OUYANG H B. A non-dominated sorting genetic approach using elite crossover for the combined cooling, heating, and power system with three energy storages[J]. Applied Energy, 2023, 329: 120227. [7] Tsao Y F, Wang Y, Chiu P H, et al. Demonstration of a millimeter-wave high-power transceiver module using AlN interposer[C]//2023 Asia-Pacific Microwave Conference (APMC), Taipei, 2023. [8] XIANG H M, FENG Z H, LI Z P, et al. Theoretical predicted high-thermal-conductivity cubic Si3N4 and Ge3N4: Promising substrate materials for high-power electronic devices[J]. Scientific Reports, 2018, 8(1): 14374. [9] BALANDIN A A, GHOSH S, BAO W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907. [10] 何诗雨, 熊定邦. 集成电路领域铜基材料的应用现状及与石墨烯复合展望[J]. 中国有色金属学报, 2023, 33(5): 1349-1377. [11] HAN N, VIET CUONG T, HAN M, et al. Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern[J]. Nature Communications, 2013, 4(2): 1452. [12] RHO H, LEE S, BAE S K, et al. Three-dimensional porous copper-graphene heterostructures with durability and high heat dissipation performance[J]. Scientific Reports, 2015, 5: 12710. [13] TONG Y, LUO T, WANG Q, et al. Heat dissipation enhancement of high-power LEDs through compact ceramic substrate integrated with microchannel[J]. IEEE Transactions on Electron Devices, 2023, 70(9): 4749-4753. [14] HE W, YIN E S, ZHOU F, et al. Integrated manifold microchannels and near-junction cooling for enhanced thermal management in 3D heterogeneous packaging technology[J]. Energy, 2024, 305: 132263. [15] VAN ERP R, SOLEIMANZADEH R, NELA L, et al. Co-designing electronics with microfluidics for more sustainable cooling[J]. Nature, 2020, 585(7824): 211-216. [16] Hanks D F, Lu Z m, Sircar J, et al. Nanoporous membrane device for ultra high heat flux thermal management[J]. Microsystems & Nanoengineering, 2018, 4(1): 47. [17] 何峻杰, 王耀霆, 孟通, 等. 大功率T/R组件相变温控平板热管的散热特性实验研究[J]. 西安交通大学学报, 2022, 56(6): 142-150. [18] 林佳, 刘云峰, 尹本浩, 等. 一种复合相变热沉设计与散热性能分析[J]. 航天器环境工程, 2020, 37(4): 390-396. [19] AN Z G, CHEN X, ZHAO L, et al. Numerical investigation on integrated thermal management for a lithium-ion battery module with a composite phase change material and liquid cooling[J]. Applied Thermal Engineering, 2019, 163: 114345. [20] CHEN L, DENG D X, HUANG Q S, et al. Development and thermal performance of a vapor chamber with multi-artery reentrant microchannels for high-power LED[J]. Applied Thermal Engineering, 2020, 166: 114686. [21] JIANG G C, TIAN Z, LUO X, et al. Ultrathin aluminum wick with dual-scale microgrooves for enhanced capillary performance[J]. International Journal of Heat and Mass Transfer, 2022, 190: 122762. [22] LUO Y Q, LIU W Y, HUANG G W. Fabrication and experimental investigation of the bionic vapor chamber[J]. Applied Thermal Engineering, 2020, 168: 114889. [23] CAI S Q, CHEN Y C, BHUNIA A. Design, development and tests of a compact thermofluid system[J]. Applied Thermal Engineering, 2016, 102(1): 1320-1327. [24] BAI J J, LIANG Y F, QIU H R, et al. A novel ultra-thin 90° bent vapor chamber for heat dissipation in multi-heat source electronic devices[C]// 2023 24th International Conference on Electronic Packaging Technology (ICEPT), Shihezi, 2023. [25] ZENG J, LIN L, TANG Y, et al. Fabrication and capillary characterization of micro-grooved wicks with reentrant cavity array[J]. International Journal of Heat and Mass Transfer, 2017, 104: 918-929. [26] LIU L Q, FU C, LI S Y, et al. Superspreading surface with hierarchical porous structure for highly efficient vapor-liquid phase change heat dissipation[J]. Small, 2024, 20(44): 2403040. [27] ZHANG S W, ZHAO Y C, BAI J J, et al. Pool boiling enhancement of copper powder-mesh composite surface based on screen printing for high-power electronics cooling[C]// 2024 25th International Conference on Electronic Packaging Technology (ICEPT), Tianjin, 2024. [28] LIU T J, YU Z, YAN X, et al. Research on the application of active thermoelectric cooling technology in the field of power chip heat dissipation[C]// 2024 25th International Conference on Electronic Packaging Technology (ICEPT), Tianjin, 2024. [29] 徐志男, 赵华东, 李成, 等. 用于电子芯片的热电制冷器性能分析与评估[J]. 低温与超导, 2024, 52(2): 86-96. [30] 梁仁瓅, 牟运, 彭洋, 等. 大功率LED芯片直接固晶热电制冷器主动散热[J]. 电子与封装, 2023, 23(10): 100201. [31] DING Y J, XU L L, WANG Q, et al. Heat dissipation enhancement of high-power deep-ultraviolet LEDs through plated copper on thick film diamond substrates[J]. IEEE Electron Device Letters, 2024, 45(9): 1634-1637. [32] DING Y J, LI J Y, HAO Z L, et al. Enhanced heat dissipation of high-power InGaN blue laser diode through diamond substrates[J]. IEEE Photonics Technology Letters, 2024, 36(16): 1005-1008. [33] QI Z N, ZHENG Y T, ZHU X H, et al. An ultra-thick all-diamond microchannel heat sink for single-phase heat transmission efficiency enhancement[J]. Vacuum, 2020, 177: 109377. [34] TIAN B, WANG X Y, CHEN D Y, et al. Design and characteristics of thermoelectric and liquid cooling composite active heat dissipation of power electronics[C]// 2024 25th International Conference on Electronic Packaging Technology (ICEPT), Tianjin, 2024. [35] DU Y H, CHEN Y X, LIU J W, et al. Boosting thermoelectric generator (TEG) performance with tandem radiative/evaporative/phase change cooler[J]. Nano Energy, 2024, 128: 109909.
|