[1] LU J Q. 3D Hyper-integration: Past, present and future[J]. Future Fab International, 2012, 41: 81-87. [2] LAU J H. Overview and outlook of through-silicon via (TSV) and 3D integrations[J]. Microelectronics International, 2011, 28(2): 8-22. [3] GAMBINO J P, ADDERLY S A, KNICKERBOCKER J U. An overview of through-silicon-via technology and manufacturing challenges[J]. Microelectronic Engineering, 2015, 135: 73-106. [4] HENRY D, BAILLIN X, LAPRAS V, et al. Via first technology development based on high aspect ratio trenches filled with doped polysilicon[C]// 2007 Proceedings 57th Electronic Components and Technology Conference, Sparks, 2007: 830-835. [5] GUPTA S, HILBERT M., HONG S, et al. Techniques for producing 3D ICs with high-density interconnect[C]// 2004 21st International IEEE VLSI Multilevel Interconnection Conference (VMIC), Waikoloa Beach, 2004. [6] BEYNE E. The rise of the 3rd dimension for system intergration[C]// 2006 IEEE International Interconnect Technology. Conference, San Francisco, 2006: 1-5. [7] REDOLFI A, VELENIS D, THANGARAJU P, et al. Implementation of an industry compliant, 5×50 μm, via-middle TSV technology on 300 mm wafers[C]// 2011 IEEE 61st Electronic Components and Technology Conference (ECTC), Lake Buena Vista, 2011: 1384-1388. [8] BEYNE E. Reliable via-middle copper through-silicon via technology for 3-D integration[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 6(7): 983-992. [9] BANIJAMALI B, RAMALINGAM S, NAGARAJAN K, et al. Advanced reliability study of TSV interposers and interconnects for the 28 nm technology FPGA[C]// 2011 IEEE 61st Electronic Components and Technology Conference (ECTC), Lake Buena Vista, 2011. [10] CHANDRASEKARAN N. Challenges in 3D memory manufacturing and process integration[C]// 2013 IEEE International Electron Devices Meeting, Washington, 2013. [11] LEE D U, KIM K W, KIM K W, et al. A 1.2 V8 gb 8-channel 128 GB/s high-bandwidth memory (HBM) stacked DRAM with effective I/O test circuits[J]. IEEE Journal of Solid-State Circuits, 2015, 50(1): 191-203. [12] HOZAWA K, FURUTA F, HANAOKA Y, et al. Demonstration of inter-chip data transmission in a three-dimensional stacked chip fabricated by chip-level TSV integration[C]// 2012 Symposium on VLSI Technology (VLSIT), Honolulu, 2012. [13] CHEN J C, LAU J H, HSU T C, et al. Challenges of Cu CMP of TSVs and RDLs fabricated from the backside of a thin wafer[C]// 2013 IEEE International 3D Systems Integration Conference (3DIC), San Francisco, 2013. [14] CIVALE Y, GONZALEZ M, TEZCAN D S, et al. A novel concept for ultra-low capacitance via-last TSV[C]// 2010 IEEE International 3D Systems Integration Conference (3DIC), Munich, 2010. [15] CHEN E H, HSU T C, LIN C H, et al. Fine-pitch backside via-last TSV process with optimization on temporary glue and bonding conditions[C]// 2013 IEEE 63rd Electronic Components and Technology Conference, Las Vegas, 2013. [16] CHUI K J, LOH W L, WANG C, et al. A cost-effective, CMP-less, via-last TSV process for high density RDL applications[C]// 2016 IEEE 66th Electronic Components and Technology Conference (ECTC). Las Vegas, 2016. [17] VAN H S, STUCCHI M, LI Y, et al. Small pitch, high aspect ratio via-last TSV module[C]// 2016 IEEE 66th Electronic Components and Technology Conference (ECTC). Las Vegas, 2016: 43-49. [18] JING X M, DAI F., ZHANG W Q, et al. Via last TSV process for wafer level packaging[C]// 2016 17th International Conference on Electronic Packaging Technology (ICEPT), Wuhan, 2016. [19] YOSHIKAWA H, KAWASAKI A, TOMOAKI I, et al. Chip scale camera module (CSCM) using through-silicon-via (TSV)[C]// 2009 IEEE International Solid-State Circuits Conference-Digest of Technical Papers, San Francisco, 2009. [20] LAERMER F , SCHILP A. Method of nisotropically Etching Si: US5501893 A[P]. 1996-03-26. [21] JOHNSTON I R, ASHRAF H, BHARDWAJ J K, et al. Etching 200-mm diameter SCALPEL masks with the ASE process[J]// Emerging Lithographic Technologies Ⅳ. SPIE, 2000, 3997: 184-193. [22] NAGARAJAN R, LIAO E, L D Y, et al. Development of a novel deep silicon tapered via etch process for through-silicon interconnection in 3-D integrated systems[C]// 56th Electronic Components and Technology Conference 2006. San Diego, 2006. [23] WU B Q, KUMAR A, PAMARTHY S. High aspect ratio silicon etch: A review[J]. Journal of Applied Physics, 2010, 108(5): 051101. [24] CHOI J W, LOH W L, PRAVEEN S K, et al. A study of the mechanisms causing surface defects on sidewalls during Si etching for TSV (through Si via)[J]. Journal of Micromechanics and Microengineering, 2013, 23(6): 065005. [25] YONG Z, LI H, ZHANG W. Fabrication of dielectric insulation layers in TSV by different processes[C]// 2014 IEEE 16th Electronics Packaging Technology Conference (EPTC), Singapore, 2014. [26] ARCHARD D, GILES K, PRICE A, et al. Low temperature PECVD of dielectric films for TSV applications[C]// 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC), Las Vegas, 2010: 764-768. [27] SHEN S P, CHEN W H, DOW W P, et al. Copper seed layer repair using an electroplating process for through silicon via metallization[J]. Microelectronic Engineering, 2013, 105(5): 25-30. [28] INOUE F, SHIMIZU T, MIYAKE H, et al. Highly adhesive electroless barrier/Cu-seed formation for high aspect ratio through-Si vias[J]. Microelectronic Engineering, 2013, 106(6): 164-167. [29] HUANG B K, LIN C M, HUANG S J, et al. Integration challenges of TSV backside via reveal process[C]// 2013 IEEE 63rd Electronic Components and Technology Conference, Las Vegas, 2013: 915-917. [30] JIN S, WANG G, YOO B. Through-silicon-via (TSV) filling by electrodeposition of Cu with pulse current at ultra-short duty cycle[J]. Journal of the Electrochemical Society, 2013, 160(12): D3300-D3305. [31] KIM M J, KIM H C, CHOE S, et al. Cu bottom-up filling for through silicon vias with growing surface established by the modulation of leveler and suppressor[J]. Journal of the Electrochemical Society, 2013, 160(12): D3221-D3227. [32] HAYASHI T, KONDO K, SAITO T, et al. Correlation between filled via and produced cuprous ion concentration by reverse current waveform[J]. Journal of the Electrochemical Society, 2013, 160(6): D256-D259. [33] LIN G Y, YAN J J, YEN M Y, et al. Characterization of through-hole filling by copper electroplating using a tetrazolium salt inhibitor[J]. Journal of the Electrochemical Society, 2013, 160(12): D3028-D3034. [34] ZHOU T S, MA S Y, ZHENG F X, et al. Design and development of 3D WLCSP for CMOS image sensor using vertical via technology[C]// 2020 China Semiconductor Technology International Conference (CSTIC), Shanghai, 2020. [35] MA S Y, LIU Y, ZHENG F X, et al. Development and reliability study of 3D WLCSP for automotive CMOS image sensor using TSV technology[C]// 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), Orlando, 2020. [36] MA S Y, CHANG J W, WANG J, et al. Progress and applications of embedded system in chip (eSinC?) technology[C]//2020 IEEE 70th Electronic Components and Technology Conference (ECTC), Orlando, 2020. [37] GAN C L, HUANG C Y. Interconnect Reliability in Advanced Memory Device Packaging[M]. Cham: Springer International Publishing, 2023. [38] XIE J Y, SHI H, LI Y, et al. Enabling the 2.5D integration[J]. International Symposium on Microelectronics, 2012, 2012(1): 254-267.[LinkOut] [39] LI Z, SHI H, XIE J Y, et al. Development of an optimized power delivery system for 3D IC integration with TSV silicon interposer[C]// 2012 IEEE 62nd Electronic Components and Technology Conference, San Diego, 2012: 678-682. [40] ARS S. Intel introduces foveros: 3D die stacking for more than just memory[EB/OL]. (2018-12-12)[2024-05-16].https://arstechnica.com/gadgets/2018/12/intel-introduces-foveros-3d-die-stacking-for-more-than-just-memory/. [41] CHEN M F, LIN C S, LIAO E B, et al. SoIC for low-temperature, multi-layer 3D memory integration[C]// 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), Orlando 2020: 855-860.
|