电子与封装 ›› 2025, Vol. 25 ›› Issue (1): 010202 . doi: 10.16257/j.cnki.1681-1070.2025.0008
彭琳峰,杨凯,余胜涛,刘涛,谢伟良,杨世洪,张昱,崔成强
收稿日期:
2024-06-29
出版日期:
2025-01-22
发布日期:
2025-01-08
作者简介:
彭琳峰(1999—),男,江西吉安人,硕士研究生,主要研究方向为电子封装材料及互连工艺。
PENG Linfeng, YANG Kai, YU Shengtao, LIU Tao, XIE Weiliang, YANG Shihong, ZHANG Yu, CUI Chengqiang
Received:
2024-06-29
Online:
2025-01-22
Published:
2025-01-08
摘要: 半导体器件的快速发展对封装互连材料提出了更高的要求。微纳铜材料具有良好的导电、导热和机械性能。与常用的微纳银相比,微纳铜具有更强的抗电迁移能力和更低的成本,在封装互连领域被广泛应用。微纳铜材料的制备方法可分为化学法、物理法、生物法3类,其中化学液相还原法以低成本、高可控、工艺简单等优势占据重要地位。不同的封装互连工艺步骤需要不同形貌的微纳铜颗粒。微纳铜材料在封装互连中主要应用于芯片固晶、Cu-Cu键合、细节距互连等工艺,探讨了微纳铜材料在以上工艺中的应用,并对微纳铜材料在封装互连中的应用进行展望。
中图分类号:
彭琳峰,杨凯,余胜涛,刘涛,谢伟良,杨世洪,张昱,崔成强. 微纳铜材料的制备及其在封装互连中的应用*[J]. 电子与封装, 2025, 25(1): 010202 .
PENG Linfeng, YANG Kai, YU Shengtao, LIU Tao, XIE Weiliang, YANG Shihong, ZHANG Yu, CUI Chengqiang. Preparation of Micro-Nano Copper Material and Its Applications in Package Interconnection[J]. Electronics & Packaging, 2025, 25(1): 010202 .
[1] LIU J J, LIU Y K, TAN Y Y L. Research status and new progress of SiC power electronic devices[J]. Semiconductor Technology, 2017,42(10): 744-753. [2] KOBAYASHI T, MITSUI K, SHOHJI I. Effects of Ni addition to Sn–5Sb high-temperature lead-free solder on its microstructure and mechanical properties[J]. Materials Transactions, 2019, 60(6): 888-894. [3] LIU W S, WANG Y K, MA Y Z, et al. Interfacial microstructure evolution and shear behavior of Au-20Sn/(Sn)Cu solder joints bonded at 250 ℃[J]. Materials Science and Engineering A, 2016, 651: 626-635. [4] DING S, JIU J T, GAO Y, et al. One-step fabrication of stretchable copper nanowire conductors by a fast photonic sintering technique and its application in wearable devices[J]. ACS Applied Materials and Interfaces, 2016, 8(9): 6190-6199. [5] LI J J, CHENG C L, SHI T L, et al. Surface effect induced Cu-Cu bonding by Cu nanosolder paste[J]. Materials Letters, 2016, 184: 193-196. [6] CHEW L M, SCHMITT W, SCHWARZER C, et al. Micro-silver sinter paste developed for pressure sintering on bare Cu surfaces under air or inert atmosphere[C]//2018 IEEE 68th Electronic Components and Technology Conference (ECTC), San Diego,2018. [7] KHAZAKA R, MENDIZABAL L, HENRY D. Review on joint shear strength of nano-silver paste and its long-term high temperature reliability[J]. Journal of Electronic Materials, 2014, 43(7): 2459-2466. [8] ZUO Y, SHEN J, XIE J C, et al. Influence of Cu micro/nano-particles mixture and surface roughness on the shear strength of Cu-Cu joints[J]. Journal of Materials Processing Technology, 2018, 257: 250-256. [9] PARK B K, JEONG S, KIM D, et al. Synthesis and size control of monodisperse copper nanoparticles by polyol method[J]. Journal of Colloid and Interface Science, 2007, 311(2): 417-424. [10] DEL CARRO L, ZINN A A, RUCH P, et al. Oxide-free copper pastes for the attachment of large-area power devices[J]. Journal of Electronic Materials, 2019, 48(10): 6823-6834. [11] ZHANG Y, LIU Q, LIU Y, et al. Green synthesis of novel in situ micro/submicron-Cu paste for semiconductor interconnection[J]. Nanotechnology, 2022, 33(28): 285705. [12] SON S U, PARK I K, PARK J, et al. Synthesis of Cu2O coated Cu nanoparticles and their successful applications to Ullmann-type amination coupling reactions of aryl chlorides[J]. Chemical Communications-Royal Society of Chemistry, 2004, 1(7): 778-779. [13] ALLAHVERDI ?. Synthesis of copper nano/microparticles via thermal decomposition and their conversion to copper oxide film[J]. Turkish Journal of Chemistry, 2023, 47(3): 616-632. [14] KEILBACH A, MOSES J, K?HN R, et al. Electrodeposition of copper and silver nanowires in hierarchical mesoporous silica/anodic alumina nanostructures[J]. Chemistry of Materials, 2010, 22(19): 5430-5436. [15] LI G, WANG N, WANG Y, et al. Synthesis and performance characterization of nano-copper by electrochemical deposition method based on coaxial electrode structure[J]. Journal of the Iranian Chemical Society, 2023, 20(4): 839-848. [16] AHMADI E, MALEKZADEH M, SADRNEZHAAD S K H. An investigation on the milling and hydrogen reduction behavior of nanostructured W-Cu oxide powder[C]// the International Conference on Nanotechnology: Fundamentals and Applications, Ottawa, 2010. [17] WANG X L, XU B S, XU Y, et al. Preparation of nano-copper as lubrication oil additive[J]. Journal of Central South University of Technology, 2005, 12(2): 203-206. [18] EL-AAL M A, SETO T. Spark discharge deposition of Au/Cu nanoparticles for surface-enhanced Raman scattering[J]. Surface and Interface Analysis, 2021, 53(9): 824-828. [19] RAFFI M, MEHRWAN S, BHATTI T M, et al. Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli[J]. Annals of Microbiology, 2010, 60(1): 75-80. [20] 沈俊杰. 基于铜纳米棒的低温互连工艺研究[D]. 武汉: 华中科技大学, 2017. [21] NAZAR N, BIBI I, KAMAL S, et al. Cu nanoparticles synthesis using biological molecule of P. granatum seeds extract as reducing and capping agent: Growth mechanism and photo-catalytic activity[J]. International Journal of Biological Macromolecules, 2018, 106: 1203-1210. [22] RAJESH K M, AJITHA B, REDDY Y A K, et al. Assisted green synthesis of copper nanoparticles using syzygium aromaticum bud extract: Physical, optical and antimicrobial properties[J]. Optik, 2018, 154: 593-600. [23] KROUPA A, ANDERSSON D, HOO N, et al. Current problems and possible solutions in high-temperature lead-free soldering[J]. Journal of Materials Engineering and Performance, 2012, 21(5): 629-637. [24] 晏子强, 王永生, 谭彩凤, 等. 导电胶的研究进展[J]. 包装工程, 2024,45(5): 8-17. [25] FAN J L, LI G, ZHU P L, et al. Copper nanoplates based conductive paste as die attachment materials for power semiconductor device package[C]//2019 20th International Conference on Electronic Packaging Technology (ICEPT), Hong Kong, 2019. [26] PENG Y, MOU Y, LIU J X, et al. Fabrication of high-strength Cu-Cu joint by low-temperature sintering micron-nano Cu composite paste[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(11): 8456-8463. [27] KIM J, LEE B, KOO J M, et al. Copper nanoparticle paste on different metallic substrates for low temperature bonded interconnection[C]//2017 IEEE 19th Electronics Packaging Technology Conference (EPTC), Singapore, 2017. [28] 张银侠. 复合微纳铜颗粒膏的制备及其烧结性能的研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. [29] SON K, OH A, PARK E, et al. Thermal shock reliability of micro-nano bimodal Cu-Ag sintered joints[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(22): 17493-17501. [30] KODENTSOV A A, PAUL A, VAN DAL M J H, et al. On the spatial stability and bifurcation of the Kirkendall plane during solid-state interdiffusion[J]. Critical Reviews in Solid State and Materials Sciences, 2008, 33(3/4): 210-233. [31] WANG J N, CHEN J S, ZHANG L X, et al. Forming mechanism and growth of Kirkendall voids of Sn/Cu joints for electronic packaging: A recent review[J]. Journal of Advanced Joining Processes, 2022, 6: 100125. [32] CHEN K N, FAN A, TAN C S, et al. Bonding parameters of blanket copper wafer bonding[J]. Journal of Electronic Materials, 2006, 35(2): 230-234. [33] JANGAM S, BAJWA A A, MOGERA U, et al. Fine-pitch (≤10 μm) direct Cu-Cu interconnects using in-situ formic acid vapor treatment[C]//2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, 2019. [34] YANG Y T, CHOU T C, YU T Y, et al. Low-temperature Cu-Cu direct bonding using pillar-concave structure in advanced 3-D heterogeneous integration[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(9): 1560-1566. [35] ZHANG M H, GAO L Y, LI J J, et al. Characterization of Cu-Cu direct bonding in ambient atmosphere enabled using (111)-oriented nanotwinned-copper[J]. Materials Chemistry and Physics, 2023, 306: 128089. [36] ARAI S, NAKAJIMA S, SHIMIZU M, et al. Direct Cu-Cu bonding by low-temperature sintering using three-dimensional nanostructured plated Cu films[J]. Materials Today Communications, 2023, 35: 105790. [37] WU Z J, CAI J, WANG Q, et al. Low temperature Cu-Cu bonding using copper nanoparticles fabricated by high pressure PVD[J]. AIP Advances, 2017, 7(3): 035306. [38] KOYANAGI M, LEE K W, FUKUSHIMA T, et al. New multichip-to-wafer 3D integration technology using self-assembly and Cu nano-pillar hybrid bonding[C]//2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Hangzhou, 2016. [39] KAGAWA Y, HASHIGUCHI H, KAMIBAYASHI T, et al. Impacts of misalignment on 1 μm pitch Cu-Cu hybrid bonding[C]//2020 IEEE International Interconnect Technology Conference (IITC), San Jose, 2020. [40] LEE J R, AZIZ M S A, ISHAK M H H, et al. A review on numerical approach of reflow soldering process for copper pillar technology[J]. The International Journal of Advanced Manufacturing Technology, 2022, 121(7/8): 4325-4353. [41] LI M, TIAN D W, CHEUNG Y, et al. A high throughput and reliable thermal compression bonding process for advanced interconnections[C]//2015 IEEE 65th Electronic Components and Technology Conference (ECTC), San Diego, 2015. [42] GERBER M, BEDDINGFIELD C, O’CONNOR S, et al. Next generation fine pitch Cu Pillar technology—enabling next generation silicon nodes[C]//2011 IEEE 61st Electronic Components and Technology Conference (ECTC), Lake Buena Vista, 2011. [43] ZURCHER J, YU K, SCHLOTTIG G, et al. Nanoparticle assembly and sintering towards all-copper flip chip interconnects[C]//2015 IEEE 65th Electronic Components and Technology Conference (ECTC), San Diego, 2015. [44] DEL CARRO L, ZURCHER J, DRECHSLER U, et al. Low-temperature dip-based all-copper interconnects formed by pressure-assisted sintering of copper nanoparticles[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9(8): 1613-1622. [45] WANG S Q, ZOU G S, WU Y C, et al. Patterned Cu nanoparticle film for all-Cu interconnection without chemical mechanical polishing pretreatment[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2023, 13(5): 604-614. |
[1] | 张浩,周伟洁,李靖. 金铝键合界面行为分析与寿命模型研究[J]. 电子与封装, 2025, 25(1): 10201-. |
[2] | 柴昭尔, 卢会湘, 徐亚新, 李攀峰, 王杰, 田玉, 王康, 韩威, 尹学全. 面向高密度数字SiP应用的封装工艺研究[J]. 电子与封装, 2025, 25(1): 10204-. |
[3] | 冉光龙,王波,黄伟,龚雨兵,潘开林. IMC厚度对混装焊点热疲劳寿命的影响研究*[J]. 电子与封装, 2025, 25(1): 10203-. |
[4] | 蔡洪渊,康伟,齐轶楠,邵海洲,俞民良. 基于SiP的半导体激光器恒温控制及驱动系统设计[J]. 电子与封装, 2025, 25(1): 10306-. |
[5] | 王文哲,李权震,余胜涛,笪贤豪,何伟伟,杨冠南,崔成强. 基于纳米铜膏的导电结构激光并行扫描烧结成型技术*[J]. 电子与封装, 2025, 25(1): 10402-. |
[6] | 吴诗娇,林伟. 基于CDCA-YOLOv8的无人机图像小目标识别[J]. 电子与封装, 2025, 25(1): 10501-. |
[7] | 李泉震,王小京. In掺杂Sn-1Ag-0.7Cu-3Bi-1.5Sb-xIn/Cu互连结构在热载荷下的损伤[J]. 电子与封装, 2024, 24(12): 120101-. |
[8] | 于鹏举, 代岩伟, 秦飞. 基于SVR数据驱动模型的SiC功率器件关键互连结构热疲劳寿命预测研究*[J]. 电子与封装, 2024, 24(12): 120201-. |
[9] | 刘吉康. 有效减小FOPLP中芯片偏移量的方法[J]. 电子与封装, 2024, 24(12): 120202-. |
[10] | 庞瑞阳,吴洁,王磊,邢卫兵,蔡志匡. 基于田口法的高热可靠性DFN封装最优结构参数仿真研究*[J]. 电子与封装, 2024, 24(12): 120203-. |
[11] | 刘智珂,曹炳阳. GaN HEMT热特性的反射热成像研究*[J]. 电子与封装, 2024, 24(11): 110102-. |
[12] | 杨浩,王小京,蔡珊珊. Sn57Bi0.1Sb钎料力学性能分析及Anand模型参数确定[J]. 电子与封装, 2024, 24(11): 110104-. |
[13] | 余胜涛,笪贤豪,何伟伟,彭琳峰,王文哲,杨冠南,崔成强. 嵌入合金框架的扇出型板级封装结构及其翘曲仿真分析*[J]. 电子与封装, 2024, 24(11): 110201-. |
[14] | 孙浩洋, 姬峰, 张晓宇, 兰梦伟, 李鑫宇, 冯青华, 兰元飞, 王明伟. 面向大功率器件散热的金刚石基板微流道仿真研究*[J]. 电子与封装, 2024, 24(11): 110204-. |
[15] | 王亚飞, 杨鲁东, 吴雷, 李宏. 芯片焊盘加固提升Au-Al键合可靠性研究[J]. 电子与封装, 2024, 24(11): 110203-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
访问总数: 当日访问总数: 当前在线:
版权所有 © 2019-2024 中国电子科技集团公司第五十八研究所 苏ICP备11028747号
地址:江苏省无锡市滨湖区惠河路5号 邮编:214035 电话:0510-85860386 电子邮箱:ep.cetc58@163.com
本系统由北京玛格泰克科技发展有限公司设计开发