[1] Pickel J C. Single-event effects rate prediction[J]. IEEE Trans. Nucl. Sci., 1996, 43(2):483-495.
[2] R Marec, P Calvel, M Mélotte. Methodology to predict the SEE rate in Vertical MOSFET with Deep Charge Collection[C]. The QCA days conference, 2009.
[3] D Peyre, Ch Binois, R Mangeret, F Bezerra, R Ecoffet. Fluence effect on SEE response of power MOSFET[C]. The QCA days conference, January 2009.
[4] J K Hohl, G H Johnson. Feature of triggering mechanism for single event burnout of power MOSFETs[J]. IEEE Trans. Nucl. Sci., 1989, 36(6).
[5] S Kuboyama, N Ikeda, T Hirao, S Matsuda. Improved model for single-event burnout mechanism[J]. IEEE Trans Nucl. Sci., 2014, 51(6).
[6] F Roubaud, et al. Experimental and 2D simulation study of the single event burnout in N-channel power MOSFETs[J]. IEEE Trans. Nucl. Sci., 1993, 40(6):1952–1958.
[7] Haran, A Barak, J David, D, et al. Mapping of Single Event Burnout in Power MOSFETs[J]. IEEE Trans. Nucl. Sci., 2007, 54(6):2488-2494.
[8] A H Johnston, G M Swift, T Miyahira, et al. Breakdown of Gate Oxides During Irradiation with Heavy Ions[J]. IEEE Trans. Nucl. Sci., 1998, 45(6):1-10.
[9] Giovanni Busatto, Giuseppe Curro, Francesco Iannuzzo, et al. Heavy-Ion Induced Single Event Gate Damage in Medium Voltage Power MOSFETs[J]. IEEE Trans. Nucl. Sci., 2009, 56(6):3573-3581.
[10] Jeffrey L Titus. An Updated Perspective of Single Event Gate Rupture and Single Event Burnout in Power MOSFETs[J]. IEEE Trans. Nucl. Sci., 2013, 60(3):1912-1928. |