[1] HILTON A, TEMPLE D S. Wafer-level vacuum packaging of smart sensors[J]. Sensors (Basel), 2016, 16(11): E1819. [2] TUMMALA R R. Fundamentals of microsystems packaging[M]. New York: McGraw-Hill, 2000. [3] 白玉斐, 戚晓芸, 牛帆帆, 等. 面向高密度互连的混合键合技术研究进展[J]. 电子与封装, 2025, 25(5): 050102. [4] LAU J H. Semiconductor Advanced Packaging[M]. Berlin: Springer, 2021. [5] YU C, WU S, ZHONG Y, et al. Application of through glass via (TGV) technology for sensors manufacturing and packaging[J]. Sensors (Basel), 2023, 24(1): 171. [6] RAMM P, LU J Q, TAKLO M. Handbook of wafer bonding[M]. Weinheim: Wiley-VCH, 2012. [7] 梁亨茂. 基于晶圆键合的MEMS圆片级封装研究综述[J]. 电子与封装, 2022, 22(12): 120201. [8] GONG S C. Fabrication of pressure sensors using silicon direct bonding[J]. Sensors and Materials, 2004, 16(3): 119-131. [9] LI J, JIANG Y G, LI H C, et al. Direct bonding of silicon carbide with hydrofluoric acid treatment for high-temperature pressure sensors[J]. Ceramics International, 2020, 46(3): 3944-3948. [10] LI W W, LIANG T, JIA P G, et al. Fiber-optic Fabry-Perot pressure sensor based on sapphire direct bonding for high-temperature applications[J]. Applied Optics, 2019, 58(7): 1662-1666. [11] ZHANG L, ZHANG W D, ZHANG S G, et al. Micro-fabrication and hermeticity measurement of alkali-atom vapor cells based on anodic bonding[J]. Chinese Optics Letters, 2019, 17(10): 100201. [12] WAN Y, LI Z, HUANG Z, et al. Wafer-level self-packaging design and fabrication of MEMS capacitive pressure sensors[J]. Micromachines (Basel), 2022, 13(5): 738. [13] HAUS J N, SCHWERTER M, SCHNEIDER M, et al. Robust pressure sensor in SOI technology with butterfly wiring for airfoil integration[J]. Sensors (Basel), 2021, 21(18): 6140. [14] YILDIZ F. Anodically bondable Low Temperature Co-Fired Ceramic (LTCC) based Fabry-Pérot Interferometer (FPI) pressure sensor design[J]. Optik, 2021, 247: 167755. [15] KNECHTEL R. Glass frit bonding: an universal technology for wafer level encapsulation and packaging[J]. Microsystem Technologies, 2005, 12(1): 63-68. [15] KNECHTEL R. Glass frit bonding: an universal technology for wafer level encapsulation and packaging[J]. Microsystem Technologies, 2005, 12(1): 63-68. [16] DEMIRHAN AYDIN G, AKAR O S, AKIN T. Wafer level vacuum packaging of MEMS-based uncooled infrared sensors[J]. Micromachines (Basel), 2024, 15(8): 935. [17] KNECHTEL R, DEMPWOLF S, HERING S. Heat conductivity based inner cavity pressure monitoring and hermeticity monitoring for glass frit wafer bonded MEMS devices[J]. ECS Journal of Solid State Science and Technology, 2021, 10(8): 084006. [18] GUO P, MENG H L, DAN L, et al. High vacuum packaging of MEMS devices containing heterogeneous discrete components[J]. Applied Sciences, 2021, 11(18): 8536. [19] 陈明祥, 易新建, 刘胜, 等. 基于共晶的MEMS芯片键合技术及其应用[J]. 半导体光电, 2004, 25(6): 484-488. [20] TORUNBALCI M M, GAVCAR H D, YESIL F, et al. An all-silicon process platform for wafer-level vacuum packaged MEMS devices[J]. IEEE Sensors Journal, 2021, 21(13): 13958-13964. [21] LI D L, SHANG Z G, SHE Y, et al. Investigation of Au/Si eutectic wafer bonding for MEMS accelerometers[J]. Micromachines, 2017, 8(5): 158. [22] SZOSTAK K M, KESHAVARZ M, CONSTANDINOU T G. Hermetic chip-scale packaging using Au:Sn eutectic bonding for implantable devices[J]. Journal of Micromechanics and Microengineering, 2021, 31(9): 095003. [23] WERNICKE T, REBHAN B, VUORINEN V, et al. Review-recent developments in low temperature wafer level metal bonding for heterogenous integration[J]. ECS Journal of Solid State Science and Technology, 2024, 13(10): 104005. [24] KIM T, HAN S, LEE J, et al. Development and characterization of low temperature wafer-level vacuum packaging using Cu-Sn bonding and nanomultilayer getter[J]. Micromachines (Basel), 2023, 14(2): 448. [25] XIA H, ROY A, NGUYEN H V, et al. Failure analysis of fabrication process in hermetic wafer-level packaging for microbolometer focal plane arrays[J]. Microelectronics Reliability, 2022, 138: 114712. [26] VUORINEN V, DONG H, ROSS G, et al. Wafer level solid liquid interdiffusion bonding: formation and evolution of microstructures[J]. Journal of Electronic Materials, 2021, 50(3): 818-824. [27] VUORINEN V, ROSS G, KLAMI A, et al. Demonstrating 170 ℃ low-temperature Cu-In-Sn wafer-level solid liquid interdiffusion bonding[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2022, 12(3): 446-453. [[28] BARGIEL S, COGAN J, QUESTE S, et al. Comparison of anodic and Au-Au thermocompression Si-wafer bonding methods for high-pressure microcooling devices[J]. Micromachines (Basel), 2023, 14(7): 1297. [29] ELSOTOHY M, FROEHLICH J, DIETRICH L, et al. Effects of the hardness and roughness on the plastic deformation properties of electroplated gold bumps during thermocompression bonding[J]. Microelectronics Reliability, 2022, 138: 114713. [30] WUU S G, CHEN H L, CHIEN H C, et al. A review of 3-dimensional wafer level stacked backside illuminated CMOS image sensor process technologies[J]. IEEE Transactions on Electron Devices, 2022, 69(6): 2766-2778. [31] LAU J H. Recent advances and trends in Cu-Cu hybrid bonding[J]. IEEE Transactions on Components Packaging and Manufacturing Technology, 2023, 13(3): 399-425. [32] KANG Q S, WANG C X, ZHOU S C, et al. Low-temperature co-hydroxylated Cu/SiO2 hybrid bonding strategy for a memory-centric chip architecture[J]. ACS Applied Materials & Interfaces, 2021, 13(32): 38866-38876. [33] NIU F F, WANG X B, YANG S H, et al. Low-temperature Cu/SiO2 hybrid bonding based on Ar/H2 plasma and citric acid cooperative activation for multi-functional chip integration[J]. Applied Surface Science, 2024, 648: 159074. [34] KIM Y S, NGUYEN T H, CHOA S H. Enhancement of the bond strength and reduction of wafer edge voids in hybrid bonding[J]. Micromachines (Basel), 2022, 13(4): 537. [35] LIANG T, LI W W, LEI C, et al. All-SiC fiber-optic sensor based on direct wafer bonding for high temperature pressure sensing[J]. Photonic Sensors, 2022, 12(2): 130-139. [36] ZHANG Y, JIANG Y, DENG H, et al. All-sapphire-based optical fiber pressure sensor with an ultra-wide pressure range based on femtosecond laser micromachining and direct bonding[J]. Opt Express, 2023, 31(25): 41967-41978. [37] GE Y X, CAI K J, WANG T T, et al. MEMS pressure sensor based on optical Fabry-Perot interference[J]. Optik, 2018, 165: 35-40. [38] WANG L, DU X, WANG L, et al. High-Q wafer level package based on modified tri-layer anodic bonding and high performance getter and its evaluation for micro resonant pressure sensor[J]. Sensors (Basel), 2017, 17(3): E599. [39] XU C, WANG J B, CHEN D Y, et al. The MEMS-based electrochemical seismic sensor with integrated sensitive electrodes by adopting anodic bonding technology[J]. IEEE Sensors Journal, 2021, 21(18): 19833-19839. [40] KIM K B, KIM J, PARK C W, et al. Glass-frit bonding of silicon strain gages on large thermal-expansion-mismatched metallic substrates[J]. Sensors and Actuators A: Physical, 2018, 282: 230-236. [41] PFEIFER F, BR?NNER A, SEIFERLING F, et al. Bottom-up SAW resonator design for single-stage glass frit bonding at chip-level[J]. IEEE Sensors Journal, 2024, 24(6): 7625-7635. [42] CHEN S, QIN J, LU Y, et al. An all-silicon resonant pressure microsensor based on eutectic bonding[J]. Micromachines (Basel), 2023, 14(2): 441. [43] GHANAM M, WOIAS P, GOLDSCHMIDTB?ING F. MEMS pressure sensors with novel TSV design for extreme temperature environments[J]. Sensors (Basel), 2025, 25(3): 636. [44] WANG J, ZHANG H, CHEN X, et al. Hermetic packaging based on Cu-Sn and Au-Au dual bonding for high-temperature graphene pressure sensor[J]. Micromachines (Basel), 2022, 13(8): 1191. [45] XIA H X, NGUYEN H V, ROY A, et al. Robustness of large-size vacuum sealed packages for microbolometer array[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2024, 14(10): 1731-1736. [46] CHENG C, YAO J H, LU Y L, et al. A resonant differential pressure microsensor with stress isolation and Au-Au bonding in packaging[J]. IEEE Transactions on Electron Devices, 2022, 69(4): 2023-2029. [47] HUANG M M, WU X Y, ZHAO L B, et al. Small-size temperature/high-pressure integrated sensor via flip-chip method[J]. Microsystems & Nanoengineering, 2024, 10(1): 104. [48] KAGAWA Y, FUJII N, AOYAGI K, et al. Novel stacked CMOS image sensor with advanced Cu2Cu hybrid bonding[C]// 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2016: 8.4.1-8.4.4. [49] KAGAWA Y, HIDA S, KOBAYASHI Y, et al. The scaling of Cu-Cu hybrid bonding for high density 3D chip stacking[C]// 2019 Electron Devices Technology and Manufacturing Conference (EDTM), Singapore, Singapore, 2019: 297-299. [50] KAGAWA Y, HASHIGUCHI H, KAMIBAYASHI T, et al. Impacts of misalignment on 1μm pitch Cu-Cu hybrid bonding[C]// 2020 IEEE International Interconnect Technology Conference (IITC), San Jose, CA, USA, 2020: 148-150. [51] IKEGAMI Y, ONODERA T, CHIYOZONO M, et al. Study of ultra-fine 0.4 μm pitch wafer-to-wafer hybrid bonding and impact of bonding misalignment[C]// 2024 IEEE 74th Electronic Components and Technology Conference (ECTC), Denver, CO, USA, 2024: 299-304. [52] GOTO M, HONDA Y, NANBA M, et al. Pixel-parallel three-layer stacked CMOS image sensors using double-sided hybrid bonding of SOI wafers[J]. IEEE Transactions on Electron Devices, 2023, 70(9): 4705-4711.
|