中国半导体行业协会封装分会会刊

中国电子学会电子制造与封装技术分会会刊

导航

电子与封装

• 封装、组装与测试 •    下一篇

基于分子动力学的GaN/Ta-Au-Ta/金刚石的键合研究

李施霖1,陈博远1,王成君2,李嘉宁1,杜经宁4,孙庆磊1,3,4   

  1. 1.中国地质大学广州南沙地大滨海研究院,广州  511462;2.中国电子科技集团公司第二研究所,太原  030024;3.中山大学惠州研究院,广东 惠州  516081;4.香港城市大学系统工程系,香港  999077
  • 收稿日期:2025-09-25 修回日期:2025-12-09 出版日期:2025-12-10 发布日期:2025-12-10
  • 通讯作者: 孙庆磊
  • 基金资助:
    广州市南沙区重点领域科技计划项目(2024DZ010),惠州与香港澳门科技合作项目(2025EQ010045),国家自然科学基金(52302032),国家重点研发计划(2022YFB3404300)

Molecular Dynamics Study on the Bonding of GaN/Ta–Au–Ta/Diamond

LI Shilin1, CHEN Boyuan1, WANG Chengjun2, LI Jianing1, TU King-ning4, SUN Qinglei1,3,4   

  1. 1. Institute for Advanced Marine Research, China University of Geosciences, Guangzhou 511462, China; 2. The 2ND Research Institute of China Electronics Technology Group Corporation, Taiyuan 030024, China; 3. Huizhou Research Institute of Sun Yat-sen University, Huizhou, Guangdong 516081, China; 4. Department of Systems Engineering, City University of Hong Kong, Hong Kong 999077, China
  • Received:2025-09-25 Revised:2025-12-09 Online:2025-12-10 Published:2025-12-10
  • Supported by:

摘要: 为解决氮化镓(GaN)功率器件散热瓶颈并克服GaN/金刚石直接键合中的晶格及热失配难题,基于分子动力学模拟,构建GaN/Ta–Au–Ta/金刚石结构,研究不同温度与压力下的界面键合与原子扩散行为。通过均方位移(MSD)、扩散系数与径向分布函数(RDF)分析原子运动,结合z轴方向原子数量分布图评估界面致密化特征。结果表明,温度由298 K升至500 K、压力由0 MPa增至10 MPa时,界面扩散显著增强,表现为MSD斜率增大、扩散系数上升及RDF主峰降低,界面混合加深;压力提升至15 MPa后扩散受抑。Ta原子扩散能力高于Au,促进界面更快致密化,其中Au-Ta界面呈现最高无序度,原子混合明显。揭示Ta-Au-Ta中间层增强GaN/金刚石界面原子扩散辅助键合机制,为优化键合参数与提升高功率器件热管理性能提供理论依据。

关键词: 分子动力学, 键合, 界面扩散, 氮化镓, 金刚石

Abstract: To address the thermal management bottleneck of GaN power devices and the challenges posed by lattice and thermal mismatch in direct GaN/diamond integration, a molecular dynamics simulation model of the GaN/Ta–Au–Ta/diamond structure is constructed to investigate interfacial bonding and atomic diffusion behavior under different temperatures and pressures. Atomic motion characteristics are analyzed through mean square displacement, diffusion coefficient, and radial distribution function, while Atom Count Distribution along the z-axis is used to evaluate interfacial densification. The results indicate that increasing temperature from 298 K to 500 K and pressure from 0 MPa to 10 MPa significantly enhances interfacial diffusion, as evidenced by steeper MSD slopes, higher diffusion coefficients, and decreased RDF peak intensity, leading to intensified interfacial mixing. When the pressure increases to 15 MPa, atomic diffusion is suppressed. Ta atoms exhibit higher diffusion capability than Au atoms, facilitating faster interfacial densification, with the Au–Ta interface showing the highest degree of atomic disorder and pronounced intermixing. These findings reveal the atomic diffusion-assisted bonding mechanism mediated by the Ta–Au–Ta interlayer in GaN/diamond heterostructures and provides theoretical guidance for optimizing bonding parameters and improving thermal management performance in high-power electronic devices.

Key words: molecular dynamic, bonding, interfacial diffusion, GaN, diamond