[1] LAU J H. Recent advances and trends in advanced packaging[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2022, 12(2): 228-252. [2] CHEN L, ANDERS A S G, ZOU G, et al. Characterization of substrate materials for system-in-a-package applications[J]. Journal of Electronic Packaging, 2004, 126(2): 195-201. [3] DUAN G, KANAOKA Y, MCREE R, et al. Die embedding challenges for EMIB advanced packaging technology[C]// 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, 2021: 1-7. [4] ZHONG Z Y, MA Z C. A novel defect detection algorithm for flexible integrated circuit package substrates[J]. IEEE Transactions on Industrial Electronics, 2022, 69(2): 2117-2126. [5] GU X X, LIU D X, SADHU B. Packaging and antenna integration for silicon-based millimeter-wave phased arrays: 5G and beyond[J]. IEEE Journal of Microwaves, 2021, 1(1): 123-134. [6] CHEN Z W, ZHANG J J, WANG S Z, et al. Challenges and prospects for advanced packaging[J]. Fundamental Research, 2024, 4(6): 1455-1458. [7] LAU J H. Advanced packaging[M]// Singapore: Springer Singapore, 2021: 1-25. [8] YEARY L, BRUSBERG L, KIM C, et al. Co-packaged optics on glass substrates for 102.4 Tb/s data center switches[C]// 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, 2023: 224-227. [9] CHU J N, LIU X, ZHANG X, et al. Annealing temperature dependence of mechanical and structural properties of chromium-gold films on the silica glass substrate[J]. Thin Solid Films, 2023, 774: 139849. [10] ZHAO X Y, SHAO J Z, TIAN Y D, et al. GLASSR-net: glass substrate spectral restoration neural network for Fourier transform infrared microspectroscopy in the fingerprint region[J]. Analytical Chemistry, 2025, 97(10): 5734-5743. [11] ZHAO J, CHEN Z H, QIN F, et al. Development of high performance 2.5D packaging using glass interposer with through glass vias[J]. Journal of Materials Science: Materials in Electronics, 2023, 34(25): 1790. [12] ZHAO J, QIN F, YU D Q. Warpage prediction and optimization for wafer-level glass interposer packaging[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2024, 14(8): 1394-1402. [13] LAI Y Y, PAN K, PARK S. Thermo-mechanical reliability of glass substrate and through glass vias (TGV): a comprehensive review[J]. Microelectronics Reliability, 2024, 161: 115477. [14] SURILLO E T, SOSA R A, MOLINA C, et al. Bayesian optimization of large glass package architecture for system-level reliability in high-performance computing applications[C]// 2024 IEEE 74th Electronic Components and Technology Conference (ECTC), Denver, 2024: 246-253. [15] JIA X F, LI X C, MOON K S, et al. Die-embedded glass packaging for 6G wireless applications[J]. MRS Advances, 2022, 7(29): 630-634. [16] 赵瑾,于大全. 基于金属无机介质混合键合的多层基板和制备方法:CN202311835179.8[P]. 2023-12-28. [17] 赵瑾, 于大全. 基于3D集成无源器件的桥连结构及其制造方法:CN2024108210872[P]. 2024-07-10. [18] 方志丹, 于中尧, 武晓萌, 等. FCBGA基板关键技术综述及展望[J]. 电子与封装, 2023, 23(3): 030103. [19] 张兴治, 田英良, 赵志永, 等. 玻璃基板在芯片封装中的应用和性能要求[J]. 硅酸盐通报, 2025, 44(2): 707-716. [20] 陈俊伟, 王超凡, 张章龙, 等. 玻璃在5G通讯中的应用[J]. 电子元件与材料, 2023, 42(8): 899-906. [21] 张迅, 王晓龙, 李宇航, 等. 三维集成电子封装中TGV技术及其器件应用进展[J]. 电子元件与材料, 2024, 43(10): 1190-1198. [22] CHEN Z H, YU D Q, ZHONG Y. Development of 3D wafer level hermetic packaging with through glass vias (TGVs) and transient liquid phase bonding technology for RF filter[J]. Sensors, 2022, 22(6): 2114. [23] LIU F H, NAIR C, ITO H, et al. Low-cost 1 μm photolithography technologies for large-body-size, low-resistance panel-based RDL[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9(7): 1426-1433. [24] LAU J H. Multiple system and heterogeneous integration with TSV-interposers[M]// Singapore: Springer Nature Singapore, 2023: 137-269. [25] JIN S H, DO W C, JEONG J S, et al. Substrate silicon wafer integrated fan-out technology (S-SWIFT?) packaging with fine pitch embedded trace RDL[C]// 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, 2022: 1355-1361. [26] LIU F H, NIMBALKAR P, ASLANI-AMOLI N, et al. A critical review of lithography methodologies and impacts of topography on 2.5-D/3-D interposers[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2023, 13(3): 291-299. [27] WANG T, LU C W, FENG E, et al. A novel FOPLP structure with chip first & RDL first process for automotive chip application[C]// 2024 IEEE 74th Electronic Components and Technology Conference (ECTC), Denver, 2024: 1868-1871. [28] 刘丽敏. 基于超薄玻璃衬底的桥连封装技术研究[D]. 厦门:厦门大学, 2025. [29] HSU P C, CHANG S C, LU W X, et al. Enhanced adhesion strength between electroplated Cu and ABF substrate with isothermal annealing treatment[J]. Surface and Coatings Technology, 2024, 479: 130576. [30] YE R, CHEN E, TENG W Y, et al. Study of parameter tuning for the curing condition on ABF type for large FCBGA package[C]// 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, 2022: 1987-1990. [31] SHIH M, CHEN K R, LEE T, et al. FE simulation model for warpage evaluation of glass interposer substrate packages[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11(4): 690-696. [32] NAM S, KANG J, LEE I, et al. Investigation on package warpage and reliability of the large size 2.5 D molded interposer on substrate (MIoS) package[C]// 2022 IEEE 72nd electronic components and technology conference (ECTC), San Diego, 2022: 643-647. [33] ZHAO J, QIN F, YU D Q, et al. Warpage characteristic of glass interposer with different CTE’s and thickness[C]// 2021 22nd International Conference on Electronic Packaging Technology (ICEPT), Xiamen, 2021: 1-4. [34] LAU J, FAN X. Hybrid Bonding, Advanced substrates, failure mechanisms, and thermal management for Chiplets and heterogeneous integration[M]. Springer Nature, 2025. [35] KIM H, HWANG J Y, KIM S E, et al. Thermomechanical challenges of 2.5-D packaging: a review of warpage and interconnect reliability[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2023, 13(10): 1624-1641. [36] LEE C C, CHANG C P, CHEN C Y, et al. Warpage estimation and demonstration of panel-level fan-out packaging with Cu pillars applied on a highly integrated architecture[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2023, 13(4): 560-569. [37] OKAZAKI D, BABA E, INOUE Y, et al. Effective build-up substrate design for warpage reduction and reliability enhancement in advanced semiconductor packages[C]//2025 IEEE 75th Electronic Components and Technology Conference (ECTC). IEEE, 2025: 847-851. [38] 李欣欣, 李守委, 陈鹏, 等. 基于FCBGA封装应用的有机基板翘曲研究[J]. 电子与封装, 2024, 24(2): 020108. [39] 李炎朴, 梁仁超, 王瀚鹏, 等. 石英玻璃皮秒激光切割实验研究[J]. 中国激光, 2024, 51(24): 90-98. [40] JIANG R, UEHLING T, HE B, et al. Semiconductor chip and package co-design and assembly for dual use in flip chip and wirebond BGA packages[C]// 2024 IEEE 26th Electronics Packaging Technology Conference (EPTC), Singapore, 2024: 207-213. [41] KIM M J, KIM H C, KIM J J. The influences of iodide ion on Cu electrodeposition and TSV filling[J]. Journal of The Electrochemical Society, 2016, 163(8): D434. [42] FUJIMOTO K, OKAWA Y, TAI T, et al. Development of Glass core substrate with the stress analysis, transmission characteristics and reliability[C]// 2024 IEEE 74th Electronic Components and Technology Conference (ECTC), Denver, 2024: 546-550. [43] TAN M, XU J, LIU S Y, et al. Co-packaged optics (CPO): status, challenges, and solutions[J]. Frontiers of Optoelectronics, 2023, 16(1): 1. [44] TIRUMALA A, WONG R. NVIDIA blackwell platform: advancing generative AI and accelerated computing[C]//2024 IEEE Hot Chips 36 Symposium (HCS), Stanford, 2024: 1-33.
|