[1] AHMED S R, BAGHDADI R, BERNADSKIY M, et al. Universal photonic artificial intelligence acceleration[J]. Nature, 2025, 640(8058): 368-374. [2] 马力, 项敏, 吴婷. 三维异构集成的发展与挑战[J]. 电子与封装, 2024, 24(6): 060112. [3] HUA S Y, DIVITA E, YU S S, et al. An integrated large-scale photonic accelerator with ultralow latency[J]. Nature, 2025, 640(8058): 361-367. [4] 卞玲艳, 曾燕萍, 蔡莹, 等. 大数据时代光电共封技术的机遇与挑战[J]. 激光与光电子学进展, 2024, 61(9): 0900006. [5] 张郭勇. 光电共封装技术及其在光学相控阵中的应用研究[J]. 电子与封装, 2025, 25(6): 060206. [6] TIAN W C, HOU H H, DANG H J, et al. Progress in research on co-packaged optics[J]. Micromachines, 2024, 15(10): 1211. [7] BROQUIN J E, HONKANEN S. Integrated photonics on glass: a review of the ion-exchange technology achievements[J]. Applied Sciences, 2021, 11(10): 4472. [8] 陈俊伟, 王超凡, 张章龙, 等. 玻璃在5G通讯中的应用[J]. 电子元件与材料, 2023, 42(8): 899-906. [9] LAU J H. Co-packaged optics: heterogeneous integration of photonic integrated circuits and electronic integrated circuits[J]. Journal of Electronic Packaging, 2025, 147(1): 011004. [10] MINKENBERG C, KRISHNASWAMY R, ZILKIE A, et al. Co-packaged datacenter optics: opportunities and challenges[J]. IET Optoelectronics, 2021, 15(2): 77-91. [11] GE C, WANG X Y, DU J B, et al. High-speed wafer-level TGV interposer for 2.5D CPO[J]. Optics Communications, 2025, 579: 131517. [12] MAHAJAN R, LI X Q, FRYMAN J, et al. Co-packaged photonics for high performance computing: status, challenges and opportunities[J]. Journal of Lightwave Technology, 2022, 40(2): 379-392. [13] TAN M, XU J, LIU S Y, et al. Co-packaged optics (CPO): status, challenges, and solutions[J]. Frontiers of Optoelectronics, 2023, 16(1): 1. [14] RAZDAN S, DE DOBBELAERE P, XUE J, et al. Advanced 2.5D and 3D packaging technologies for next generation silicon photonics in high performance networking applications[C]//2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2022: 428-435. [15] LIANG D, BOWERS J E. Recent progress in heterogeneous III-V-on-silicon photonic integration[J]. Light: Advanced Manufacturing, 2021, 2(1): 59-83. [16] CHEN J W, LUO T, HUANG H B, et al. Glass-based encapsulant enabling SiC power devices to long-term operate at 300 ℃[J]. Applied Surface Science, 2025, 680: 161452. [17] CHEN J W, CHEN W, ZHANG L Z, et al. Tuning the thermal and insulation properties of bismuth borate glass for SiC power electronics packaging[J]. Journal of the American Ceramic Society, 2024, 107(4): 2207-2216. [18] CHEN J W, TIAN T C, GU C, et al. Review of inorganic nonmetallic materials in power electronics packaging application[J]. IEEE Transactions on Power Electronics, 2025, 40(8): 10509-10530. [19] 张兴治, 田英良, 赵志永, 等. 玻璃基板在芯片封装中的应用和性能要求[J]. 硅酸盐通报, 2025, 44(2): 707-716. [20] YAN W Y, ZHAO J, CHEN Y J, et al. Research on integration of photonic and electronic chips based on glass interposer (invited)[ C]// 2024 IEEE Region 10 Conference (TENCON), Singapore, 2024: 442-445. [21] CHEN J W, CHEN C L, LAU K Y, et al. Nanoconfined synthesis of lead sulfide quantum dots embedded in mesoporous aluminosilicate glass with adjustable near-infrared broadband luminescence[J]. Chemistry of Materials, 2024, 36(3): 1113-1122. [22] CHEN J W, LI A, ZHONG C, et al. Regulating the valence state of lead ions in lead aluminosilicate glass to improve the passivation performance for advanced chip packaging[J]. Applied Surface Science, 2024, 651: 159208. [23] WEST B R. Ion-exchanged glass waveguide technology: a review[J]. Optical Engineering, 2011, 50(7): 071107. [24] GE C, WANG X Y, DU J B, et al. 8-inch wafer level through glass via (TGV) interposer with 110-GHz bandwidth facing 128-GBaud 2.5D co-packaged optics (CPO)[C]//2024 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC), Beijing, China, 2024: 1-4. [25] LEE C C, CHUANG J C, YANG C T, et al. Simulation and metrological applications for RDL patterning development of glass substrate[C]//2024 IEEE 74th Electronic Components and Technology Conference (ECTC), Denver, CO, USA, 2024: 990-995. [26] SCHR?DER H, SCHWIETERING J, B?TTGER G, et al. Hybrid photonic system integration using thin glass platform technology[J]. Journal of Optical Microsystems, 2021, 1(3): 033501. [27] SCHR?DER H, SCHWIETERING J, KIRSCH O, et al. Low-loss optical single-mode waveguide platform in thin glass with wide spectral range[C]//Optical Interconnects XXII, San Francisco, USA, 2022. [28] SCHIMPF A, BUCCI D, NANNINI M, et al. Photothermal microfluidic sensor based on an integrated Young interferometer made by ion exchange in glass[J]. Sensors and Actuators B: Chemical, 2012, 163(1): 29-37. [29] BRUSBERG L, GRANADOS-BAEZ M, SCHILLING R D, et al. Optical design and applications for ion-exchanged glass waveguide circuits[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2025: 1. [30] GUPTA P, MALLIK A K, KROHNERT K, et al. Thermal and electrical study of glass interposers in co-packaged electronic-photonic systems[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2025: 1. [31] ALLENET T, GEOFFRAY F, BUCCI D, et al. Microsensing of plutonium with a glass optofluidic device[J]. Optical Engineering, 2019, 58(6): 060502. [32] CHOU B C, SATO Y, SUKUMARAN V, et al. Modeling, design, and fabrication of ultra-high bandwidth 3D Glass Photonics (3DGP) in glass interposers[C]//2013 IEEE 63rd Electronic Components and Technology Conference, Las Vegas, NV, USA, 2013: 286-291. [33] BRUSBERG L, NEITZ M, PERNTHALER D, et al. Electro-optical circuit board with single-mode glass waveguide optical interconnects[C]//Optical Interconnects XVI, San Francisco, California, USA, 2016: 97530J. [34] NEITZ M, SCHNEIDER-RAMELOW M, SCHR?DER H. Demonstration of glass-based photonic interposer for mid-board-optical engines and electrical-optical circuit board (EOCB) integration strategy[C]//Optical Interconnects XVIII, San Francisco, USA, 2018: 105380D. [35] SCHR?DER H, KIRSCH O, WEBER D, et al. Photonic system-in-package (pSiP) by applying thin glass[C]//2023 IEEE CPMT Symposium Japan (ICSJ), Kyoto, Japan, 2023: 212-215. [36] SCHWIETERING J, HERBST C, KIRSCH O, et al. Integrated optical single-mode waveguide structures in thin glass for flip-chip PIC assembly and fiber coupling[C]//2020 IEEE 70th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2020: 148-155. [37] AL-SHAMI H, SCHWIETERING J, SCHR?DER H. Automated highspeed characterization of optical waveguides in large-format glass substrates[C]//2024 IEEE 10th Electronics System-Integration Technology Conference (ESTC), Berlin, Germany, 2024: 1-4. [38] BRUSBERG L, GRENIER J R, MATTHIES J, et al. Passive aligned glass waveguide connector for co-packaged optics[C]//2021 European Conference on Optical Communication (ECOC), Bordeaux, France, 2021: 1-4. [39] BRUSBERG L, GRENIER J R, ZAKHARIAN A R, et al. Glass platform for co-packaged optics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2023: 1-11. [40] BRUSBERG L, GRENIER J R, KOCABA? ? E, et al. Glass interposer for high-density photonic packaging[C]//Optical Fiber Communication Conference (OFC) 2022, San Diego, California, 2022. [41] BRUSBERG L, DEJNEKA M J, OKORO C A, et al. Ultra low-loss ion-exchange waveguides in optimized alkali glass for co-packaged optics[C]//2024 IEEE 74th Electronic Components and Technology Conference (ECTC), Denver, CO, USA, 2024: 85-89. [42] HOLGUíN-LERMA J A, BRUSBERG L, YEARY L W, et al. Glass substrate with integrated adiabatic waveguide bends for high-density fiber-to-chip coupling[C]//Optical Interconnects and Packaging 2025, San Francisco, USA, 2025: 1337209.
|