[1] 曹立强, 侯峰泽, 王启东, 等. 先进封装技术的发展与机遇[J]. 前瞻科技, 2022, 1(3): 101-114. [2] 费久斌. 异构集成2.5D封装结构界面剥离及C4焊点热疲劳行为的有限元模拟研究[D]. 广州:华南理工大学,2021. [3] ARNAUD L, KARAM C, BRESSON N, et al. Three-dimensional hybrid bonding integration challenges and solutions toward multi-wafer stacking[J]. MRS Communications, 2020, 10(4): 549-557. [4] 褚正浩, 张书强, 候明刚. 2.5D/3D芯片-封装-系统协同仿真技术研究[J]. 电子与封装, 2021, 21(10): 100103. [5] LIU Y, YAO C, SUN F L, et al. Numerical simulation of reliability of 2.5D/3D package interconnect structure under temperature cyclic load[J]. Microelectronics Reliability, 2021, 125: 114343. [6] KABIR M A, PETRANOVIC D, PENG Y R. Coupling extraction and optimization for heterogeneous 2.5D chiplet-package co-design[C]// Proceedings of the 39th International Conference on Computer-Aided Design, Virtual, 2020: 1-8. [7] KABIR M A. Design, extraction, and optimization tool flows and methodologies for homogeneous and heterogeneous multi-chip 2.5D systems[M]. Fayetteville: University of Arkansas, 2021. [8] ZHAO J, CHEN Z H, QIN F, et al. Development of high performance 2.5D packaging using glass interposer with through glass vias[J]. Journal of Materials Science: Materials in Electronics, 2023, 34(25): 1790. [9] VIDEOCARD Z. AMD Fiji is the largest GPU ever made by AMD[EB/OL]. (2015-06-17)/[2025-03-07]. https://videocardz.com/56614/amd-fiji-is-the-largest-gpu-ever-made-by-amd. [10] TSMC. CoWoS?[EB/OL]. [2025-03-07] https://3dfabric.tsmc.com/english/dedicatedFoundry/technology/ cowos.htm. [11] 邓运凯. 集成电路芯片扇出型板级封装工艺翘曲及湿气渗入的可靠性研究[D]. 广州:华南理工大学, 2025. [12] Xilinx与台积公司宣布全线量产采用CoWoS技术的28 nm all programmable 3D IC系列[J]. 今日电子, 2013(11): 49. [13] 袁渊, 张志模, 朱媛, 等. 基于硅桥芯片互连的芯粒集成技术研究进展[J]. 微电子学, 2024, 54(2): 255-263. [14] MAHAJAN R, SANKMAN R, PATEL N, et al. Embedded multi-die interconnect bridge (EMIB): a high density, high bandwidth packaging interconnect[C]// 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 2016: 557-565. [15]三星半导体. 三星电子宣布推出面向高性能应用的下一代2.5D集成解决方案“I-Cube4”[EB/OL]. (2021-05-21)[2025-03-07]https://semiconductor.samsung.cn/news-events/news/samsung-electronics-announces- availability-of-its-next-generation-2-5d-integration-solution-i-cube4-for-high-performance-application/. [16] 张中, 乔新宇, 龙欣江, 等. 2.5D Chiplet封装结构的热应力研究[J]. 传感技术学报, 2023, 36(7): 1024-1031. [17] 李乐琪, 刘新阳, 庞健. Chiplet关键技术与挑战[J]. 中兴通讯技术, 2022, 28(5): 57-62. [18] YANG Y L, WANG Y, YI T Y, et al. A 6.4-Gbps 0.41-pJ/b fully-digital die-to-die interconnect PHY for silicon interposer based 2.5D integration[J]. Integration, 2024, 96: 102170. [19] 周刚, 曹中复. 用于2.5D封装技术的微凸点和硅通孔工艺[J]. 微处理机, 2017, 38(2): 15-18. [20] 阳柄贤. 三维芯片堆叠TSV结构微凸点互连与铜异构互连力学可靠性的模拟研究[D]. 广州: 华南理工大学, 2022. [21] AMKOR. 2.5D/3D TSV高性能和功能性解决方案[EB/OL]. [2025-03-07] https://amkor.com/cn/technology/25d-3d-tsv/. [22] MA Y, ROSHANGHIAS A, BINDER A. A comparative study on direct Cu-Cu bonding methodologies for copper pillar bumped flip-chips[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(11): 9347-9353. [23] 高丽茵, 李财富, 刘志权, 等. 先进电子封装中焊点可靠性的研究进展[J]. 机械工程学报, 2022, 58(2): 185-202. [24] KIM M J, LEE S H, SUK K L, et al. Novel 2.5D RDL interposer packaging: a key enabler for the new era of heterogenous chip integration[C]// 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2021: 321-326. [25] MANZ. 面板级封装RDL制程设备解决方案[EB/OL]. [2025-03-07] https://www.manz.com/ecomaXL/files/2024_FOPLP_Flyer_TC_read.pdf. [26] ZHANG X, LIN J K, WICKRAMANAYAKA S, et al. Heterogeneous 2.5D integration on through silicon interposer[J]. Applied physics reviews, 2015, 2(2): 1-58. [27] NAM S, KANG J, LEE I, et al. Investigation on package warpage and reliability of the large size 2.5D molded interposer on substrate (MIoS) package[C]// 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2022: 643-647. [28] LAN J S, WU M L. Simulation of micro-bump interconnections failure analysis for 2.5D IC packaging[C]// 2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Montpellier, France, 2016. [29] LEE C C, LIN P T. Reliability-based design guidance of three-dimensional integrated circuits packaging using thermal compression bonding and dummy Cu/Ni/SnAg microbumps[J]. Journal of Electronic Packaging, 2014, 136(3): 031006. [30] MURAI K, ONOZEKI H, KANG D, et al. Study of Fabrication and Reliability for the extremely large 2.5D advanced Package[C]// 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2023. [31] 孙戈辉, 吴志军, 王茉. 基于Weibull分布2.5D封装热疲劳可靠性评估[J]. 信息技术与标准化, 2021(8): 63-66. [32] 吕晓瑞, 刘建松, 黄颖卓, 等. 基于热测试芯片的2.5D封装热阻测试技术研究[J]. 电子与封装, 2023, 23(4): 040202. [33] SHAO S, NIU Y L, WANG J, et al. Design guideline on board-level thermomechanical reliability of 2.5D package[J]. Microelectronics Reliability, 2020, 111: 113701. [34] YIN W J, LAI W H, LU Y X, et al. Mechanical and thermal characterization analysis of chip-last fan-out chip on substrate[C]// 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2022: 1711-1719. [35] WU X D, WANG Z Z, MA S L, et al. An RDL modeling and thermo-mechanical simulation method of 2.5D/3D advanced package considering the layout impact based on machine learning[J]. Micromachines, 2023, 14(8): 1531. [36] GAO N Y, CAO Y Y, ZHU Y, et al. Imitation chip design based on TSV 2.5D package[C]// 2015 16th International Conference on Electronic Packaging Technology (ICEPT), Changsha, China, 2015: 122-124.
|