电子与封装 ›› 2024, Vol. 24 ›› Issue (10): 100205 . doi: 10.16257/j.cnki.1681-1070.2024.0140
冯剑雨,陈钏,曹立强,王启东,付融
收稿日期:
2024-04-09
出版日期:
2024-10-25
发布日期:
2024-10-25
作者简介:
冯剑雨(1995—),男,江苏南通人,博士研究生,主要研究方向为先进封装热管理。
FENG Jianyu, CHEN Chuan, CAO Liqiang, WANG Qidong, FU Rong
Received:
2024-04-09
Online:
2024-10-25
Published:
2024-10-25
摘要: 随着集成电路尺寸微缩逼近物理极限以及受限于光罩面积,芯粒(Chiplet)技术将成为集成电路发展的关键路径之一,支撑人工智能和高性能计算不断发展。大尺寸、高算力Chiplet面临着热功耗高、热分布不均、热输运困难等挑战,Chiplet热管理已成为后摩尔时代集成电路发展的重大挑战之一。综述了可用于Chiplet热管理的关键技术发展趋势和现状,包含微通道冷却、相变冷却、射流冷却、浸没式冷却、热界面材料(TIM)、热分布不均的解决办法、多物理场耦合的研究等,为推进大尺寸、高算力Chiplet热管理的实际应用提供参考。
中图分类号:
冯剑雨,陈钏,曹立强,王启东,付融. 高算力Chiplet的热管理技术研究进展*[J]. 电子与封装, 2024, 24(10): 100205 .
FENG Jianyu, CHEN Chuan, CAO Liqiang, WANG Qidong, FU Rong. Research Progress on Thermal Management Technology of High-Computational-Power Chiplet[J]. Electronics & Packaging, 2024, 24(10): 100205 .
[1] NVIDIAN. NVIDIA H200 Tensor core GPU supercharging AI and HPC workloads[EB/OL]. [2024-04-09]. https://www.nvidia.com/en-us/data-center/h200/. [2]姚鹏, 宋昌明, 胡杨, 等 .高算力芯片未来技术发展途径[J]. 前瞻科技, 2022, 1(3): 115-129. [3]曹立强, 侯峰泽, 王启东, 等 .先进封装技术的发展与机遇[J]. 前瞻科技, 2022, 1(3): 101-114. [4] INTEL. Intel data center GPU max series technical overview[EB/OL]. [2024-04-09]. https://www.intel.com/content/www/us/en/developer/articles/technical/intel-data-center-gpu-max-series-overview.html#:~:text=Intel%C2%AE%20Data%20Center%20GPU%20Max%20Series. [5] AMD. AMD instinct MI300X platform data sheet[EB/OL]. (2023-12-06) [2024-04-09]. https://www.intel.com/content/www/us/en/products/sku/217243/intel-xeon-w3365-processor-48m-cache-up-to-4-00-ghz/specifications.html. [6] RUPP K. Microprocessor trend data[EB/OL].[2024-04-09]. https://github.com/karlrupp/microprocessor-trend-data. [7] TRUEMAN C. Upcoming nvidia blackwell GPU will consume 1 kW of power[EB/OL]. (2024-03-05) [2024-04-09].https://www.datacenterdynamics.com/en/news/new-nvidia-blackwell-accelerator-will-consume-1kw-of-power/. [8] INTEL. Intel? xeon? W-3365 processor 48 M cache, up to 4.00 GHz[EB/OL].[2024-04-09]. https://www.intel.com/content/www/us/en/products/sku/217243/intel-xeon-w3365-processor-48m-cache-up-to-4-00-ghz/specifications.html. [9]TESLA. AI and robotics[EB/OL].[2024-04-09].https://www.tesla.com/AI. [10] TSMC. The chronicle of CoWoS[EB/OL].[2024-04-09]. https://3dfabric.tsmc.com/english/dedicatedFoundry/technology/cowos.htm. [11] MAHAJAN R, SANE S. Microelectronic package containing silicon patches for high density interconnects, and method of manufacturing same: US8064224[P]. 2011-11-22. [12] GOMES W, KHUSHU S, INGERLY D B, et al. 8.1 lakefield and mobility compute: A 3D stacked 10 nm and 22 FFL hybrid processor system in 12×12 mm2, 1 mm package-on-package[C]//2020 IEEE International Solid-State Circuits Conference (ISSCC), Piscataway, 2020. [13] SUN Y C. System scaling for intelligent ubiquitous computing[C]// 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, 2017. [14] KNECHTEL J, LIENIG J. Physical design automation for 3D chip stacks: Challenges and solutions[C]// ISPD'16: International Symposium on Physical Design, Santa Rosa, 2016. [15] IEEE. Heterogeneous integration roadmap 2023 edition[EB/OL]. [2024-04-09]. https://eps.ieee.org/images/files/HIR_2023/ch20_thermalfinal.pdf. [16] JOSHI Y. Minitherms3D [EB/OL].(2023-01-23)[2024-04-09]. https://www.darpa.mil/program/Minitherms3D. [17] BAEK I G, PARK C J, JU H, et al. Realization of vertical resistive memory (VRRAM) using cost effective 3D process[C]// 2021 67th International Electron Devices Meeting, San Francisco, 2021. [18] LAU J H, YUE T G. Thermal management of 3D IC integration with TSV (through silicon via)[C]// 2009 59th Electronic Components and Technology Conference, San Diego, 2019. [19] FODOR A, CHINDRIS G, PITICA D, et al. Guidelines on thermal management solutions for modern packaging technologies-a review[C]// 2015 IEEE 21st International Symposium for Design and Technology in Electronic Packaging (SIITME), Brasov, 2015. [20] LU J Q, ROSE K, VITKAVAGE S. 3D integration: Why, what, who, when?[J]. Future Fab Int, 2007, 23(23): 25-27. [21] JANG J J J, KIM H.S, CHO W C W, et al. Vertical cell array using TCAT (terabit cell array transistor) technology for ultra high density NAND flash memory[C]// 2009 Symposium on VLSI Technology, Kyoto, 2009. [22] BAR-COHEN A, MAURER J J, FELBINGER J G. Darpa's intra/interchip enhanced cooling (icecool) program[C]// 2013 International Conference on Compound Semiconductor Manufacturing Technology, New Orleans, 2013. [23] COLGAN E G, FURMAN B, GAYNES M, et al. High performance and sub-ambient silicon microchannel cooling[J]. 2006 4th International Conference on Nanochannels, Microchannels and Minichannels, Limerick, 2006. [24] ALI GHANI I, SIDIK N A C, MAMAT R, et al. Heat transfer enhancement in microchannel heat sink using hybrid technique of ribs and secondary channels[J]. International Journal of Heat and Mass Transfer, 2017, 114: 640-655. [25] SHI X J, LI S, MU Y J, et al. Geometry parameters optimization for a microchannel heat sink with secondary flow channel[J]. International Communications in Heat and Mass Transfer, 2019, 104: 89-100. [26] MOHAMMED H A, GUNNASEGARAN P, SHUAIB N H. Numerical simulation of heat transfer enhancement in wavy microchannel heat sink[J]. International Communications in Heat and Mass Transfer, 2011, 38(1): 63-68. [27] CHEN C, HOU F Z, MA R, et al. Design, integration and performance analysis of a lid-integral microchannel cooling module for high-power chip[J]. Applied Thermal Engineering, 2021, 198: 117457. [28] WU C J, HSIAO S T, WANG J Y, et al. Ultra high power cooling solution for 3D-ICs[C]// 2021 41st Symposium on VLSI Technology, Virtual, 2021. [29] COLGAN E G, SCHLEUPEN K, MANN P, et al. Fabrication and performance of 300-mm wafer-scale silicon microchannel cooler[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2023, 13(4): 472-480. [30] TUCKERMAN D B, PEASE R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129. [31] SARVEY T E, BAKIR M S, HU Y C, et al. Integrated circuit cooling using heterogeneous micropin-fin arrays for nonuniform power maps[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(9):1465-1475. [32] YANG Y C, DU J Y, LI M T, et al. Embedded microfluidic cooling with compact double H type manifold microchannels for large-area high-power chips[J]. International Journal of Heat and Mass Transfer, 2022, 197: 123340. [33] JUNG K W, KHARANGATE C R, LEE H S, et al. Embedded cooling with 3D manifold for vehicle power electronics application: Single-phase thermal-fluid performance[J]. International Journal of Heat and Mass Transfer, 2019, 130: 1108-1119. [34] WEI T W, OPRINS H, CHERMAN V, et al. Experimental characterization and model validation of liquid jet impingement cooling using a high spatial resolution and programmable thermal test chip[J]. Applied Thermal Engineering: Design, Processes, Equipment, Economics, 2019, 152: 308-318. [35] ONG C, PAREDES S, SRIDHAR A, et al. μflu14-6 radial hierarchical microfluidic evaporative cooling for 3-d integrated microprocessors[C]//European Conference Proceedings, Microfluidics, Limerick, 2014. [36] CHAINER T J, SCHULTZ M D, PARIDA P R, et al. Improving data center energy efficiency with advanced thermal management[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(8): 1228-1239. [37] PALKO J W, LEE H, ZHANG C, et al. Extreme two-phase cooling from laser-etched diamond and conformal, template-fabricated microporous copper[J]. Advanced Functional Materials, 2017, 27(45): 1703265. [38] DRUMMOND K P, BACK D, SINANIS M D, et al. A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics[J]. International Journal of Heat and Mass Transfer, 2018, 117: 319-330. [39] DRUMMOND K P, BACK D, SINANIS M D, et al. Characterization of hierarchical manifold microchannel heat sink arrays under simultaneous background and hotspot heating conditions[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1289-1301. [40] FAZELI A, MOGHADDAM S. A new paradigm for understanding and enhancing the critical heat flux (CHF) limit[J]. Scientific Reports, 2017, 7(1): 5184. [41] ALIPANAH M, MOGHADDAM S. Ultra-low pressure drop membrane-based heat sink with 1000 W/cm2 cooling capacity and 100% exit vapor quality[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120312. [42] BIRBARAH P, GEBRAEL T, FOULKES T, et al. Water immersion cooling of high power density electronics[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118918. [43] LIN P Y, KUO S L, YAN K, et al. Advanced thermal integration for HPC packages with two-phase immersion cooling[C]// 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, 2022. [44] XU Z, ZHANG P, YU C H, et al. Liquid super-spreading boosted high-performance jet-flow boiling for enhancement of phase-change cooling[J]. Advanced Materials, 2023,35(26): 2210557. [45] VAN ERP R, SOLEIMANZADEH R, NELA L, et al. Co-designing electronics with microfluidics for more sustainable cooling[J]. Nature, 2020, 585(7824): 211-216. [46] ZHOU F, JOSHI S N, LIU Y H, DEDE E M, Near-junction cooling for next-generation power electronics[J].International Communications in Heat and Mass Transfer, 2019,108,104300. [47] JUNG K W, CHO E, LEE H S, et al. Thermal and manufacturing design considerations for silicon-based embedded microchannel-3D manifold coolers (EMMCs): Part1—experimental study of single-phase cooling performance with R-245fa[J]. Journal of Electronic Packaging, 2020,142(3): 031118. [48] SCHLOTTING G, FAZIO M D, ESCHER W, et al. Lid-integral cold plate topology integration, performance, and reliability[C]// ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, San Francisco, 2015. [49] ASRAR P, ZHANG X C, GREEN C E, et al. Flow boiling of R245fa in a microgap with staggered circular cylindrical pin fins[J]. International Journal of Heat and Mass Transfer, 2018, 121: 329-342. [50] ZHANG X C, HAN X F, SARVEY T E, et al. Three-dimensional integrated circuit with embedded microfluidic cooling: technology, thermal performance, and electrical implications[J]. Journal of Electronic Packaging, 2016, 138(1): 010910. [51] HANSSON J, ZANDEN C, YE L L, et al. Review of current progress of thermal interface materials for electronics thermal management applications[C]//2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO), Sendai, 2016. [52] IEEE. Heterogeneous integration roadmap 2021 edition[EB/OL]. [2024-04-09]. https://eps.ieee.org/technology/heterogeneous-integration-roadmap/2021-edition.html. [53] GHAFFARZADEH K. Thermal interface materials: Diverse, essential, and evolving[EB/OL]. [2024-04-09]. https://www.idtechex.com/en/research-article/thermal-interface-materials-diverse-essential-and-evolving/21141. [54] ALEKSANDAR K. Intel details ponte vecchio accelerator: 63 tiles, 600 watt TDP, and lots of bandwidth [EB/OL]. (2022-02-22)[2024-04-09]. https://www.techpowerup.com/292250/intel-details-ponte-vecchio-accelerator-63-tiles-600-watt-tdp-and-lots-of-bandwidth. [55] MOORE S K. AMD’s next GPU is a 3D-integrated superchip[EB/OL]. (2023-12-06) [2024-04-09]. https://spectrum.ieee.org/amd-mi300. [56] RAJ P M, GANGIDI P R, NATARAJ N, et al. Coelectrodeposited solder composite films for advanced thermal interface materials[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3(6): 989-996. [57] WANG D W, WANG X H, RAO W. Precise regulation of Ga-based liquid metal oxidation[J]. Accounts of Materials Research, 2021, 2(11): 1093-1103. [58] GAO Y X, LIU J. Gallium-based thermal interface material with high compliance and wettability[J]. Applied Physics A, 2012, 107(3): 701-708. [59] KEMPERS R, KERSLAKE S. In situ testing of metal micro-textured thermal interface materials in telecommunications applications[J]. Journal of Physics: Conference Series, 2014, 525: 012016. [60] SEKAR D, KING C, DANG B, et al. A 3D-IC technology with integrated microchannel cooling[C]// 2008 International Interconnect Technology Conference, Burlingame, 2008. [61] ZHANG Y, DEMBLA A, BAKIR M S. Silicon micropin-fin heat sink with integrated TSVs for 3-D ICs: tradeoff analysis and experimental testing[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3(11): 1842-1850. [62] OH H J, ZHANG Y, ZHENG L, et al. Electrical interconnect and microfluidic cooling within 3D ICs and silicon interposer[C]// 2014 12th International Conference on Nanochannels, Microchannels and Minichannels, Chicago, 2014. [63] SARVEY T E, ZHANG Y, ZHENG L, et al. Embedded cooling technologies for densely integrated electronic systems[C]// 2015 IEEE Custom Integrated Circuits Conference (CICC), San Jose, 2015. [64] BRUNSCHWILLER T, PAREDES S, DRECHSLER U, et al. Heat-removal performance scaling of interlayer cooled chip stacks[C]// 2010 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Las Vegas, 2010. [65] BRUNSCHWILER T, STELLER W, OPPERMANN H, et al. Dual-side heat removal by silicon cold plate and interposer with embedded fluid channels[C]// 2018 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, 2018. [66] SAHU V, JOSHI Y K, FEDOROV A G, et al. Experimental characterization of hybrid solid-state and fluidic cooling for thermal management of localized hotspots[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, 5(1): 57-64. [67] SHARMA C S, TIWARI M K, ZIMMERMANN S, et al. Energy efficient hotspot-targeted embedded liquid cooling of electronics[J]. Applied Energy, 2015, 138: 414-422. [68] WANG T, JIANG Y Y, JIANG H C, et al. Surface with recoverable mini structures made of shape-memory alloys for adaptive-control of boiling heat transfer[J]. Applied Physics Letters, 2015, 107(2): 023904. [69] YAN Y F, HE Z Q, WU G G, et al. Influence of hydrogels embedding positions on automatic adaptive cooling of hot spot in fractal microchannel heat sink[J]. International Journal of Thermal Sciences, 2020, 155: 106428. [70] LI X, XUAN Y M, LI Q. Self-adaptive chip cooling with template-fabricated nanocomposite P(MEO2MA-co-OEGMA) hydrogel[J]. International Journal of Heat and Mass Transfer, 2021, 166: 120790. [71] JESSEN G H, GILLESPIE J K, VIA G D, et al. AlGaN/GaN HEMT on diamond technology demonstration[C]// 2006 IEEE Compound Semiconductor Integrated Circuit Symposium, San Antonio, 2006. [72] DARPA. Technologies for heat removal in electronics at the device scale (THREADS) proposers day[EB/OL]. (2022-11-23)[2024-04-09]. https://www.darpa.mil/news-events/2022-11-23. [73] CHU K K, CHAO P C, DIAZ J A, et al. High-performance GaN-on-diamond HEMTs fabricated by low-temperature device transfer process[C]// 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), New Orleans, 2015. [74] ZHONG Y, BAO S C, HE Y M, et al. Heterogeneous integration of diamond-on-chip-on-glass interposer for efficient thermal management[J]. IEEE Electron Device Letters, 2024, 45(3): 448-451. [75] DITRI J, HAHN J, CADOTTE R, et al. Embedded cooling of high heat flux electronics utilizing distributed microfluidic impingement jets[C]// 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, San Francisco, 2015. [76] OH H, ZHANG Y, SARVEY T E, et al. TSVs embedded in a microfluidic heat sink: High-frequency characterization and thermal modeling[C]// 2016 IEEE 20th Workshop on Signal and Power Integrity, Turin, 2016. [77] WANG Z M, YE G G, LI X J, et al. Thermal–mechanical performance analysis and structure optimization of the TSV in 3-D IC[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11(5): 822-831. |
[1] | 丁荣峥,田爽,肖汉武. 大腔体陶瓷封装中平行缝焊的密封可靠性设计[J]. 电子与封装, 2024, 24(10): 100201-. |
[2] | 陈浪,杜建宇,汪琪,张盼,张驰,王玮. 芯粒集成工艺技术发展与挑战*[J]. 电子与封装, 2024, 24(10): 100203-. |
[3] | 钟贵朝,蒋苗苗,赵明,韩英,张坤,高胜寒. 自动贴片工艺可靠性研究[J]. 电子与封装, 2024, 24(10): 100204-. |
[4] | 颜添,姚建军,郝勇. TO型器件内部水汽含量一致性控制[J]. 电子与封装, 2024, 24(10): 100206-. |
[5] | 兰耀海;吕洋;王飞;沐方清;张鹏飞. 国产G200型LTCC生瓷带应用研究[J]. 电子与封装, 2024, 24(9): 90202-. |
[6] | 王世春;沈若尧;任长友;张欣桐;武帅;邓川;王彤;郭可升;刘宏;郝志峰. 键合参数对电镀金键合性能的影响*[J]. 电子与封装, 2024, 24(9): 90206-. |
[7] | 陈祎;岳琨;吕复强;姚大平. 集成电路异构集成封装技术进展[J]. 电子与封装, 2024, 24(9): 90207-. |
[8] | 刘冠东;王伟豪;万智泉;段元星;张坤;李洁;戚定定;王传智;李顺斌;邓庆文;张汝云. 晶上系统:设计、集成及应用[J]. 电子与封装, 2024, 24(8): 80201-. |
[9] | 徐艳博;王志杰;刘美;孙志美;牛继勇. 铝焊盘镀钯铜丝多焊球脱焊失效的电化学评价[J]. 电子与封装, 2024, 24(8): 80205-. |
[10] | 韩文静;冯春苗;刘发;袁海. 混合集成电路元器件的黏接渗胶问题研究[J]. 电子与封装, 2024, 24(8): 80207-. |
[11] | 孙浩洋,姬峰,冯青华,兰元飞,王建扬,王明伟. 面向快速散热的HTCC基板微流道性能研究*[J]. 电子与封装, 2024, 24(7): 70203-. |
[12] | 李圣贤,丁增千. 倒装芯片的底部填充工艺研究[J]. 电子与封装, 2024, 24(7): 70208-. |
[13] | 赵瑾,于大全,秦飞. 面向Chiplet集成的三维互连硅桥技术*[J]. 电子与封装, 2024, 24(6): 60101-. |
[14] | 张旋,李海娟,吴道伟,张雷. 2.5D TSV转接板无损检测方法的研究[J]. 电子与封装, 2024, 24(6): 60102-. |
[15] | 吴鲁超,陆宇青,王珺. 硅通孔3D互连热-力可靠性的研究与展望*[J]. 电子与封装, 2024, 24(6): 60103-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
访问总数: 当日访问总数: 当前在线:
版权所有 © 2019-2024 中国电子科技集团公司第五十八研究所 苏ICP备11028747号
地址:江苏省无锡市滨湖区惠河路5号 邮编:214035 电话:0510-85860386 电子邮箱:ep.cetc58@163.com
本系统由北京玛格泰克科技发展有限公司设计开发