[1] YANG J L, LIU K W, CHEN X, et al. Recent advances in optoelectronic and microelectronic devices based on ultrawide-bandgap semiconductors[J]. Progress in Quantum Electronics, 2022, 83: 100397. [2] WALDROP M M. The chips are down for Moore’s law[J]. Nature, 2016, 530(7589): 144-147. [3] 吴林晟, 毛军发. 从集成电路到集成系统[J]. 中国科学: 信息科学, 2023, 53(10): 1843-1857. [4] LAU J H. Recent advances and trends in advanced packaging[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2022, 12(2): 228-252. [5] THEIL J A, MIRKARIMI L, FOUNTAIN G, et al. Recent developments in fine pitch wafer-to-wafer hybrid bonding with copper interconnect[C]//2019 International Wafer Level Packaging Conference (IWLPC), San Jose, CA, USA, 2019: 1-6. [6] TSAI W S, HUANG C Y, CHUNG C K, et al. Generational changes of flip chip interconnection technology[C]//2017 12th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), Taipei, China, 2017: 306-310. [7] KOH W, LIN B, TAI J. Copper pillar bump technology progress overview[C]//2011 12th International Conference on Electronic Packaging Technology and High Density Packaging, Shanghai, China, 2011: 1-5. [8] JIANG H, ROBERTSON S, LIANG S B, et al. Microstructural and mechanical characteristics of Cu-Sn intermetallic compound interconnects formed by TLPB with Cu-Sn nanocomposite[J]. Materials Today Communications, 2022, 33: 104623. [9] SEQUEIRA C A C, AMARAL L. Role of Kirkendall effect in diffusion processes in solids[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(1): 1-11. [10] CAI J, WANG J Q, WANG Q, et al. Effects of current stress for low temperature Cu/Sn/Cu solid-state-diffusion bonding[C]//2017 IEEE 67th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2017: 1742-1747. [11] GERBER M, BEDDINGFIELD C, O’CONNOR S, et al. Next generation fine pitch Cu Pillar technology - Enabling next generation silicon nodes[C]//2011 IEEE 61st Electronic Components and Technology Conference, Orlando, FL, USA, 2011: 612-618. [12] GARNIER A, ARNAUD L, FRANIATTE R, et al. Electrical performance of high density 10 μm diameter 20 μm pitch Cu-pillar with chip to wafer assembly[C]//2017 IEEE 67th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2017: 999-1007. [13] HU H W, CHEN K N. Development of low temperature CuCu bonding and hybrid bonding for three-dimensional integrated circuits (3D IC)[J]. Microelectronics Reliability, 2021, 127: 114412. [14] SAKAI T J, IMAIZUMI N, MIYAJIMA T. Low temperature Cu-Cu direct bonding for 3D-IC by using fine crystal layer[C]//2012 2nd IEEE CPMT Symposium Japan, Kyoto, Japan, 2012: 1-4. [15] HWANG B, KIM S, LEE J, et al. A study on the surface activation of Cu and oxide for hybrid bonding joint interface[C]//2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2023: 78-82. [16] TAN C S, LIM D F, SINGH S G, et al. Cu-Cu diffusion bonding enhancement at low temperature by surface passivation using self-assembled monolayer of alkane-thiol[J]. Applied Physics Letters, 2009, 95(19): 192108. [17] PAWAR K, HARSHA S, DIXIT P. Investigation of Cu-Sn-Cu transient liquid phase bonding for microsystems packaging[J]. Materials and Manufacturing Processes, 2023, 38(3): 284-294. [18] SHI Y F, WANG Z L, ZHANG H W, et al. Transient-liquid-phase bonding of granulated Cu–Sn bumps with a 4-μm fine pitch[J]. IEEE Transactions on Electron Devices, 2023, 70(2): 683-688. [19] LI X R, WANG J Q, LI M W, et al. Low-temperature, short-time, wafer-level bonding for Cu/Sn/Cu solid-state-diffusion interconnect in 3-D integration[J]. Physica Scripta, 2023, 98(2): 025608. [20] WANG Z L, ZHAO W J, WANG Z Y. Low-resistance interconnects by bonding porous Cu bumps and ultrathin Cu/Sn pads[J]. IEEE Transactions on Electron Devices, 2025, 72(3): 1276-1281. [21] SHIN J W, CHOI Y W, KIM Y S, et al. A novel double layer NCF for highly reliable micro-bump interconnection[C]//2014 IEEE 64th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2014: 1755-1758. [22] LEE H G, CHOI Y W, SHIN J W, et al. Wafer-level packages using B-stage nonconductive films for Cu pillar/Sn–Ag microbump interconnection[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, 5(11): 1567-1572. [23] LEE S Y, SHIN J, KIM W, et al. Effect of material properties of double-layer non conductive films (D-NCFs) on the reflow reliability of ultra fine-pitch Cu-pillar/Sn-Ag micro bump interconnection[C]//2017 IEEE 67th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2017: 2110-2115. [24] EBERSBERGER B, LEE C. Cu pillar bumps as a lead-free drop-in replacement for solder-bumped, flip-chip interconnects[C]//2008 58th Electronic Components and Technology Conference, Lake Buena Vista, FL, USA, 2008: 59-66. [25] BEYNE E, BEYER G, MILLER A, et al. Surface planarization of Cu and CuNiSn Micro-bumps embedded in polymer for below 20 μm pitch 3DIC applications[C]//AMC 2015 – Advanced Metallization Conference, San Jose, CA, USA, 2016. [26] DERAKHSHANDEH J, DE PRETER I, GERETS C, et al. 3D stacking using bump-less process for sub 10 μm pitch interconnects[C]//2016 IEEE 66th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 2016: 128-133. [27] DERAKHSHANDEH J, HOU L, DE PRETER I, et al. Die to wafer 3D stacking for below 10 μm pitch microbumps[C]//2016 IEEE International 3D Systems Integration Conference (3DIC), San Francisco, CA, USA, 2016: 1-4. [28] GUO Y K, HU A M, LI M. Investigation on solid state bonding and intermetallic compounds reaction of Cu pillar bump/Ni micro cones[C]//2018 19th International Conference on Electronic Packaging Technology (ICEPT), Shanghai, China, 2018: 419-422. [29] WANG J N, CHEN J S, ZHANG L X, et al. Forming mechanism and growth of Kirkendall voids of Sn/Cu joints for electronic packaging: a recent review[J]. Journal of Advanced Joining Processes, 2022, 6: 100125. [30] 施权, 张志杰, 高幸, 等. 全金属间化合物微焊点的制备及性能表征研究进展[J]. 中国有色金属学报, 2023, 33(4): 1129-1143. [31] AGARWAL R, ZHANG W Q, LIMAYE P, et al. Cu/Sn microbumps interconnect for 3D TSV chip stacking[C]//2010 Proceedings 60th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 2010: 858-863. [32] TANG Y-S, CHEN H C, KHO Y T, et al. Investigation and optimization of ultrathin buffer layers used in Cu/Sn eutectic bonding[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8(7): 1225-1230. [33] SHI Y F, WANG Z L, KANG J, et al. Bonding of 5 μm Cu-Sn micro bumps using thermal reflow and solid-state pre-bonding[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2022, 12(10): 1609-1617. [34] WANG Z L, SHI Y F, WANG Z Y. Low temperature Cu-Cu bonding using an intermediate sacrificial Sn layer[J]. IEEE Electron Device Letters, 2023, 44(1): 116-119. [35] WANG Z L, WANG Z Q, SHI Y F, et al. Fabrication and formation principle of porous Cu-Sn bumps for metal bonding in chiplet integration[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2024, 14(11): 2116-2123. [36] CASTILLO E, NJUKI M, PASHA A F, et al. Copper-based nanomaterials for fine-pitch interconnects in microelectronics[J]. Accounts of Chemical Research, 2023, 56(12): 1384-1394. [37] CASTILLO E, PASHA A F, LARSON Z I, et al. New generation copper-based interconnection from nanoporous CuSn alloy film sintered at low temperatures[J]. Materials Advances, 2024, 5(6): 2285-2295. [38] YU A B, KUMAR A, HO S W, et al. Development of 25-μm-pitch microbumps for 3-D chip stacking[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2012, 2(11): 1777-1785. [39] WANG J Q, WANG Q, WANG D J, et al. Study on Ar(5%H2) plasma pretreatment for Cu/Sn/Cu solid-state-diffusion bonding in 3D interconnection[C]//2016 IEEE 66th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 2016: 1765-1771. [40] WANG J Q, WANG Q, LIU Z Y, et al. Activation of electroplated-Cu surface via plasma pretreatment for low temperature Cu-Sn bonding in 3D interconnection[J]. Applied Surface Science, 2016, 384: 200-206. [41] WANG J Q, WANG Q, WU Z J, et al. Solid-state-diffusion bonding for wafer-level fine-pitch Cu/Sn/Cu interconnect in 3-D integration[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(1): 19-26. [42] WAN H L, WANG Q, CAI J, et al. Low temperature solid-state diffusion bonding of fine pitch Cu/Sn micro-bumps assisted with formic acid vapor for 3D integration[J]. Microelectronic Engineering, 2025, 298: 112319. [43] 林路禅, 刘磊, 邹贵生, 等. 基于结构纳米薄膜的微纳连接技术研究进展[J]. 机械工程学报, 2022, 58(2): 17-25. [44] LI X L. Modeling the size- and shape-dependent cohesive energy of nanomaterials and its applications in heterogeneous systems[J]. Nanotechnology, 2014, 25(18): 185702. [45] WU Z J, WANG Q, SONG C M, et al. Low temperature fine-pitch wafer-level Cu-Cu bonding using nanoparticles fabricated by PVD[C]//2018 IEEE 68th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2018: 287-292. [46] FANG J P, CAI J, WANG Q, et al. Low temperature fine-pitch Cu-Cu bonding using Au nanoparticles as intermediate[C]//2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2022: 701-706. [47] WANG S Q, ZOU G S, WU Y C, et al. Patterned Cu nanoparticle film for all-Cu interconnection without chemical mechanical polishing pretreatment[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2023, 13(5): 604-614. [48] 吴永超, 胡锦涛, 郭伟, 等. 微米银焊点的超快激光图形化沉积及其在芯片连接中的应用探索[J]. 中国激光, 2022, 49(2): 0202002. [49] SAEED W, LIU Z Y, YAN R B, et al. Nanostructured compliant interconnections for advanced Micro-Electronic packaging[J]. Materials & Design, 2024, 244: 113166. [50] 李俊龙, 徐杨, 赵雪龙, 等. 铜颗粒低温烧结技术的研究进展[J]. 焊接学报, 2022, 43(3): 13-24. [51] ZURCHER J, YU K, SCHLOTTIG G, et al. Nanoparticle assembly and sintering towards all-copper flip chip interconnects[C]//2015 IEEE 65th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2015: 1115-1121. [52] ZURCHER J, DEL CARRO L, SCHLOTTIG G, et al. All-copper flip chip interconnects by pressureless and low temperature nanoparticle sintering[C]//2016 IEEE 66th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 2016: 343-349. [53] DEL CARRO L, KOSSATZ M, SCHNACKENBERG L, et al. Laser sintering of dip-based all-copper interconnects[C]//2018 IEEE 68th Electronic Components and Technology Conference (ECTC), San Diego, CA, 2018: 279-286. [54] DEL CARRO L, ZURCHER J, DRECHSLER U, et al. Low-temperature dip-based all-copper interconnects formed by pressure-assisted sintering of copper nanoparticles[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9(8): 1613-1622. [55] XU J, RAZEEB K M, SITARAMAN S K, et al. The fabrication of ultra long metal nanowire bumps and their application as interconnects[C]//2012 12th IEEE International Conference on Nanotechnology (IEEE-NANO), Birmingham, United Kingdom, 2012: 1-6. [56] ROUSTAIE F, QUEDNAU S, DASSINGER F, et al. Room temperature interconnection technology for bonding fine pitch bumps using NanoWiring, KlettWelding, KlettSintering and KlettGlueing[C]//2020 15th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), Taipei, China, 2020: 168-171. [57] ROUSTAIE F, QUEDNAU S, WEISSENBORN F, et al. Room temperature KlettWelding interconnect technology for high performance CMOS logic[C]//2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2021: 371-376. [58] BICKEL S, PANCHENKO I, TACHIKAWA W, et al. Low temperature solid state bonding of Cu-In fine-pitch interconnects[C]//2020 IEEE 8th Electronics System-Integration Technology Conference (ESTC), T?nsberg, Norway, 2020: 1-5. [59] TSAI Y C, HU H W, CHEN K N. Low temperature copper-copper bonding of non-planarized copper pillar with passivation[J]. IEEE Electron Device Letters, 2020, 41(8): 1229-1232. [60] HONG Z-J, LIU D M, HU H-W, et al. Ultra-high strength Cu-Cu bonding under low thermal budget for chiplet heterogeneous applications[C]//2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2021: 347-352. [61] HSU M P, CHEN C Y, CHANG H C, et al. Development of low-temperature bonding platform using ultra-thin area selective deposition for heterogeneous integration[J]. Applied Surface Science, 2023, 635: 157645. [62] HSU M P, TSAI W T, CHEN C Y, et al. Low-temperature area-selective metal passivation bonding platform for heterogeneous integration[J]. IEEE Electron Device Letters, 2024, 45(7): 1273-1276. [63] LYKOVA M, PANCHENKO I, SCHNEIDER-RAMELOW M, et al. Cu-Cu thermocompression bonding with a self-assembled monolayer as oxidation protection for 3D/2.5D system integration[J]. Micromachines, 2023, 14(7): 1365. [64] PENG L, ZHANG L, FAN J, et al. Ultrafine pitch (6 μm) of recessed and bonded Cu-Cu interconnects by three-dimensional wafer stacking[J]. IEEE Electron Device Letters, 2012, 33(12): 1747-1749. [65] IKEDA A, QIU L J, NAKAHARA K, et al. Surface passivation of Cu cone bump by self-assembled-monolayer for room temperature Cu-Cu bonding[C]//2013 IEEE International 3D Systems Integration Conference (3DIC), San Francisco, CA, USA, 2013: 1-4. [66] HANG C J, LIU J H, WANG J Q, et al. A low-temperature Cu-to-Cu interconnection method by using nanoporous Cu fabricated by dealloying electroplated Cu-Zn[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(21): 18381-18388. [67] MOHAN K, SHAHANE N, LIU R, et al. A review of nanoporous metals in interconnects[J]. JOM, 2018, 70(10): 2192-2204. [68] SOSA R A, MOHAN K, NGUYEN L, et al. Cu pillar with nanocopper caps: the next interconnection node beyond traditional Cu pillar[C]//2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 2019: 655-660. [69] SOSA R A, MOHAN K, ANTONIOU A, et al. Low-temperature all-Cu interconnections formed by pressure-less sintering of Cu-pillars with nanoporous-Cu caps[C]//2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2021: 390-394. [70] SOSA R A, ANTONIOU A, SMET V. Reliability and failure analysis of chip-to-substrate Cu-pillar interconnections with nanoporous-Cu caps[C]//2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2023: 318-323. [71] NAKAGAWA T, FURUYAMA D, NAKAGAWA S, et al. Investigation of Cu-Cu direct bonding process utilized by high porosity and nanocrystal structure[C]//2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2023: 356-361. |