[1] LUNDSTROM M. Moore’s law forever?[J]. Science, 2003, 299(5604): 210-211. [2] LAU J H. Recent advances and trends in Cu-Cu hybrid bonding[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2023, 13(3): 399-425. [3] LAU J H. State of the art of Cu-Cu hybrid bonding[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2024, 14(3): 376-396. [4] GOMES W, KOKER A, STOVER P, et al. Ponte vecchio: A multi-tile 3D stacked processor for exascale computing[C]// 2022 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, CA, USA, 2022: 42-44. [5] SMITH A, CHAPMAN E, PATEL C, et al. 11.1 AMD InstinctTM MI300 series modular chiplet package-HPC and AI accelerator for exa-class systems[C]// 2024 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2024. [6] MA S L, ZHANG TQ. Research progress in hybrid bonding technology for advanced packaging applications[J]. Microelectronics & Computer, 2023, 40(11): 22-42. [7] JOURDON J, LHOSTIS S, MOREAU S, et al. Hybrid bonding for 3D stacked image sensors: Impact of pitch shrinkage on interconnect robustness[C]// 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2018: 157-160. [8] KAGAWA Y, FUJII N, AOYAGI K, et al. An advanced CuCu hybrid bonding for novel stacked CMOS image sensor[C]// 2018 IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM), Kobe, 2018: 65-67. [9] KAGAWA Y, HASHIGUCHI H, KAMIBAYASHI T, et al. Impacts of misalignment on 1 μm pitch Cu-Cu hybrid bonding[C]// 2020 IEEE International Interconnect Technology Conference (IITC), San Jose, CA, USA, 2020: 148-150. [10] WUU J, AGARWAL R, CIRAULA M, et al. 3D V-cache: The implementation of a hybrid-bonded 64 MB stacked cache for a 7 nm x86-64 CPU[C]// 2022 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, CA, USA, 2022. [11] AGARWAL R, CHENG P, SHAH P, et al. 3D packaging for heterogeneous integration[C]// 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2022: 1103-1107. [12] OUYANG Y, YANG S H, YIN D D, et al. Excellent reliability of xtacking? bonding interface[C]// 2021 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 2021: 1-6. [13] JI L, CHE F X, JI H M, et al. Wafer-to-wafer hybrid bonding development by advanced finite element modeling for 3-D IC packages[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10(12): 2106-2117. [14] JIANG H, LIU Z Y, LIN C, et al. A novel nontraditional approach to C2W Cu/SiO2 hybrid bonding[C]// 2024 25th International Conference on Electronic Packaging Technology (ICEPT), Tianjin, China, 2024: 1-3. [15] FOURNEL F, CONTINNI L, MORALES C, et al. Direct Bonding Energy in Anhydrous Atmosphere[J]. ESC Transactions, 2013, 50(7): 3-16. [16] LI Y, GOYAL D. 3D microelectronic packaging: From fundamentals to applications[M]. Cham: Springer International Publishing, 2017. [17] FOURNEL F, MORICEAU H, LARREY V, et al. From direct bonding mechanism to 3D applications[C]// 2018 IEEE International Interconnect Technology Conference (IITC), Santa Clara, CA, USA, 2018: 175-178. [18] CHIDAMBARAM V, LEONG Y W, REN Q. Wafer level fine-pitch hybrid bonding: challenges and remedies[C]// 2020 IEEE 22nd Electronics Packaging Technology Conference (EPTC), Singapore, Singapore, 2020: 459-463. [19] NETZBAND C, RYAN K, MIMURA Y, et al. 0.5 μm pitch next generation hybrid bonding with high alignment accuracy for 3D integration[C]// 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2023: 1100-1104. [20] JIANG X F, TAO Z M, YU T, et al. Fine pitch wafer-to-wafer hybrid bonding for three-dimensional integration[C]// 2023 24th International Conference on Electronic Packaging Technology (ICEPT), Shihezi City, China, 2023: 1-4. [21] SHI Y, NIAZI H K, ROSSHIRT M A, et al. 3D heterogeneous integration with sub-3 μm bond pitch chip-to-wafer hybrid bonding[C]// 2024 IEEE 74th Electronic Components and Technology Conference (ECTC), Denver, CO, USA, 2024: 51-55. [22] MA K, BEKIARIS N, HSU C H, et al. 0.5 μm pitch wafer-to-wafer hybrid bonding at low temperatures with SiCN bond layer[C]// 2024 IEEE 74th Electronic Components and Technology Conference (ECTC), Denver, CO, USA, 2024. [23] KIM Y, KIM J, KIM H, et al. Die to wafer hybrid Cu bonding for fine pitch 3D-IC applications[C]// 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2023: 1043-1047. [24] CHIU W L, LEE O H, KUO T Y, et al. Low temperature and fine pitch nanocrystalline Cu/SiCN wafer-to-wafer hybrid bonding[C]// 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2023: 1105-1109. [25] MITSUISHI H, MORI H, MAEDA H, et al. 50 nm overlay accuracy for wafer-to-wafer bonding by high-precision alignment technologies[C]// 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2023: 1664-1671. [26] NICOLAS S, SUAREZ-BERRU J J, BRESSON N, et al. 3-layer fine pitch Cu-Cu hybrid bonding demonstrator with high density TSV for advanced CMOS image sensor applications[C]// 2024 IEEE 74th Electronic Components and Technology Conference (ECTC), Denver, CO, USA, 2024: 305-311. [27] PROCTOR S J, LINHOLM L W, MAZER J A. Direct measurements of interfacial contact resistance, end contact resistance, and interfacial contact layer uniformity[J]. IEEE Transactions on Electron Devices, 1983, 30(11): 1535-1542. [28] JOURDON J, LHOSTIS S, MOREAU S, et al. Evaluation of Hybrid Bonding Interface Quality by Contact Resistivity Measurement[J]. IEEE Transactions on Electron Devices, 2019, 66(6): 2699-2703. [29] LIN H, SMITH S, STEVENSON J T M, et al. An evaluation of test structures for measuring the contact resistance of 3-D bonded interconnects[C]// 2008 IEEE International Conference on Microelectronic Test Structures, Edinburgh, UK, 2008: 123-127. [30] LEONG H L, GAN C L, MADE R I, et al. Experimental characterization and modeling of the contact resistance of Cu-Cu bonded interconnects[J]. Journal of Applied Physics, 2009, 105(3): 033514. [31] ONG J J, SHIE K C, TU K N, et al. Two-step fabrication process for die-to-die and die-to-wafer Cu-Cu bonds[C]// 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 2021: 203-210. [32] TAN C S, PENG L, LI H Y, et al. Wafer-on-wafer stacking by bumpless Cu-Cu bonding and its electrical characteristics[J]. IEEE Electron Device Letters, 2011, 32(7): 943-945. [33] KIM S E, KIM S. Wafer level Cu-Cu direct bonding for 3D integration[J]. Microelectronic Engineering, 2015, 137: 158-163. [34] AYOUB B, LHOSTIS S, MOREAU S, et al. Impact of process variations on the capacitance and electrical resistance down to 1.44 μm hybrid bonding interconnects[C]// 2020 IEEE 22nd Electronics Packaging Technology Conference (EPTC), Singapore, 2020: 453-458. [35] HE P S, SHIE K C, CHEN C. Low contact resistance and low temperature hybrid bonding with polyimide and highly-oriented nanotwinned Cu[C]// 2023 18th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), Taipei, China, 2023: 321-323. [36] HUNG T H, LO J Y, KUO T Y, et al. TSV integration with chip level TSV-to-pad Cu/SiO? hybrid bonding for DRAM multiple layer stacking[J]. IEEE Electron Device Letters, 2023, 44(7): 1176-1179. [37] HUANG Y C, LIN Y X, HSIUNG C K, et al. A novel low-warpage hyper RDL (HRDL) interposer enabled by low temperature hybrid bonding for advanced packaging applications[J]. IEEE Electron Device Letters, 2024, 45(3): 452-455. [38] ITO N, MORIYA T, UESUGI F, et al. Reduction of particle contamination in plasma-etching equipment by dehydration of chamber wall[J]. Japanese Journal of Applied Physics, 2008, 47(5R): 3630-3634. [39] CHEN Y A, ONG J J, CHIU W L, et al. Non-TCB process Cu/SiO2 hybrid bonding using plasma-free hydrophilicity enhancement with NaOH for chip-to-wafer bonding[C]// 2024 IEEE 74th Electronic Components and Technology Conference (ECTC), Denver, CO, USA, 2024: 399-403. [40] CHANG C Y, LEE S W, CHANG G M, et al. Single sided heating method for chip-to-wafer bonding with submicron Cu/In interconnects[C]// 2016 11th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), Taipei, China, 2016: 38-41. [41] WIETSTRUCK M, SCHULZE S, REBHAN B, et al. Al-Al direct bonding with sub-μm alignment accuracy for millimeter wave SiGe BiCMOS wafer level packaging and heterogeneous integration[C]// 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 2019: 942-947. [42] LIU D M, CHEN P C, HSIUNG C K, et al. Low temperature Cu/SiO2 hybrid bonding with metal passivation[C]// 2020 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 2020: 1-2. [43] HUANG Y P, CHIEN Y S, TZENG R N, et al. Demonstration and electrical performance of Cu-Cu bonding at 150 ℃ with Pd passivation[J]. IEEE Transactions on Electron Devices, 2015, 62(8): 2587-2592. [44] HUANG Y P, CHIEN Y S, TZENG R N, et al. Novel Cu-to-Cu bonding with ti passivation at 180 ℃ in 3-D integration[J]. IEEE Electron Device Letters, 2013, 34(12): 1551-1553. [45] TSAI Y C, HU H W, CHEN K N. Low temperature copper-copper bonding of non-planarized copper pillar with passivation[J]. IEEE Electron Device Letters, 2020, 41(8): 1229-1232. [46] LIU D M, CHEN P C, CHOU T C, et al. Demonstration of low-temperature fine-pitch Cu/SiO? hybrid bonding by Au passivation[J]. IEEE Journal of the Electron Devices Society, 2021, 9: 868-875. [47] BRUNSCHWILER T, ZURCHER J, ZIMMERMANN S, et al. Review of percolating and neck-based underfills with thermal conductivities up to 3 W/(m·K)[C]// 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Las Vegas, NV, USA, 2016: 140-150. [48] OPRINS H, CHERMAN V, WEBERS T, et al. Thermal characterization of the inter-die thermal resistance of hybrid Cu/dielectric wafer-to-wafer bonding[C]// 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Las Vegas, NV, USA, 2016: 1333-1339. [49] BEYNE E, KIM S W, PENG L, et al. Scalable, sub 2 μm pitch, Cu/SiCN to Cu/SiCN hybrid wafer-to-wafer bonding technology[C]// 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2017: 729-732. [50] OPRINS H, CHERMAN V, WEBERS T, et al. 3D wafer-to-wafer bonding thermal resistance comparison: Hybrid Cu/dielectric bonding versus dielectric via-last bonding[C]// 2020 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA, 2020: 219-228. [51] OPRINS H, CHERMAN V, VAN DER PLAS G, et al. Experimental characterization of the vertical and lateral heat transfer in three-dimensional stacked die packages[J]. Journal of Electronic Packaging, 2016, 138(1): 010902. [52] KIM T, LEE J, KIM Y, et al. Thermal improvement of HBM with joint thermal resistance reduction for scaling 12 stacks and beyond[C]// 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2023: 767-771. [53] KIM K, LIM S, JUNG D, et al. C2W hybrid bonding interconnect technology for higher density and better thermal dissipation of high bandwidth memory[C]// 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2023: 1048-1052. [54] KUO G, CHEN C Y, HSIEH C C, et al. A thermally friendly bonding scheme for 3D system integration[C]// 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 2023: 1973-1976. [55] ZHONG Y, BAO S C, HE Y M, et al. Heterogeneous integration of diamond-on-chip-on-glass interposer for efficient thermal management[J]. IEEE Electron Device Letters, 2024, 45(3): 448-451. [56] JIANG X, TAO Z, LI Y, et al. Interdiffusion mechanism and thermal conductance at the interfaces in Cu-to-Cu bonds achieved by coating nanolayers [J]. Surfaces and Interfaces, 2024, 46: 103985. [57] COLGAN E G, ANDRY P, DANG B, et al. Measurement of microbump thermal resistance in 3D chip stacks[C]// 2012 28th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), San Jose, CA, USA, 2012: 1-7. [58] BRUNSCHWILER T, GOICOCHEA J, WOLF H, et al. Formulation of percolating thermal underfill by sequential convective gap filling[J]. Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT), 2011: 1621-1648. [59] MATSUMOTO K, TAIRA Y. Thermal characterization of a three-dimensional (3D) chip stack[J]. Transactions of the Japan Institute of Electronics Packaging, 2009, 2(1): 153-159. [60] OPRINS H, CHERMAN V, VANDEVELDE B, et al. Characterization of the thermal impact of Cu-Cu bonds achieved using TSVs on hot spot dissipation in 3D stacked ICs[C]// 2011 IEEE 61st Electronic Components and Technology Conference (ECTC), Lake Buena Vista, FL, USA, 2011: 861-868.
|